

Creative Study Academy

জাতীয় শিক্ষাক্রম ও পাঠ্যপুত্তক বোর্ড কর্তৃক ২০১৩ শিক্ষাবর্ষ থেকে নবম–দশম শ্রেণির পাঠ্যপুত্তকরূপে নির্ধারিত

পদার্থবিজ্ঞান

নবম-দশম শ্রেণি

রচনা

ড. শাহজাহান তপনড. রানা চৌধুরীড. ইকরাম আলী শেখড. রমা বিজয় সরকার

সম্পাদনাড. আলী আসগর

Creative Study Academy

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

৬৯–৭০ মতিঝিল বাণিজ্যিক এলাকা, ঢাকা–১০০০ কর্তৃক প্রকাশিত।

[প্রকাশক কর্তৃক সর্বস্বত্ব সংরক্ষিত]

প্রথম প্রকাশ : সেপ্টেম্বর, ২০১২ পুনর্মুদ্রণ : জুন, ২০১৬

পাঠ্যপু্স্তক প্রণয়নে সমন্বয়ক মোঃ মোখলেস উর রহমান

> প্রচ্ছদ সুদর্শন বাছার সুজাউল আবেদীন

চিত্রাজ্ঞন মোঃ হাসানুল কবীর সোহাগ

ডিজাইন জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

> কম্পিউটার মেকাপ এন্ড এডিটিং পারফর্ম কালার গ্রাফিক্স (প্রাঃ) লিঃ

সরকার কর্তৃক বিনামুল্যে বিতরণের জন্য

প্রসঞ্চা-কথা

শিক্ষা জাতীয় উনুয়নের পূর্বশর্ত। আর দ্রুত পরিবর্তনশীল বিশ্বের চ্যালেঞ্জ মোকাবেলা করে বাংলাদেশকে উনুয়ন ও সমৃন্ধির দিকে নিয়ে যাওয়ার জন্য প্রয়োজন সুশিক্ষিত জনশক্তি। ভাষা আন্দোলন ও মুক্তিযুন্ধের চেতনায় দেশ গড়ার জন্য শিক্ষার্থীর অন্তর্নিহিত মেধা ও সম্ভাবনার পরিপূর্ণ বিকাশে সাহায্য করা মাধ্যমিক শিক্ষার অন্যতম লক্ষ্য। এছাড়া প্রাথমিক স্তরে অর্জিত শিক্ষার মৌলিক জ্ঞান ও দক্ষতা সম্প্রসারিত এবং সুসংহত করার মাধ্যমে উচ্চতর শিক্ষার যোগ্য করে তোলাও এ স্তরের শিক্ষার উদ্দেশ্য। জ্ঞানার্জনের এই প্রক্রিয়ার ভিতর দিয়ে শিক্ষার্থীকে দেশের অর্থনৈতিক, সামান্ধিক, সাংস্কৃতিক ও পরিবেশগত পটভূমির প্রেক্ষিতে দক্ষ ও যোগ্য নাগরিক করে তোলাও মাধ্যমিক শিক্ষার অন্যতম বিবেচ্য বিষয়।

জাতীয় শিক্ষানীতি–২০১০ এর লক্ষ্য ও উদ্দেশ্যকে সামনে রেখে পরিমার্জিত হয়েছে মাধ্যমিক স্তরের শিক্ষাক্রম। পরিমার্জিত এই শিক্ষাক্রমে জাতীয় আদর্শ, লক্ষ্য, উদ্দেশ্য ও সমকালীন চাহিদার প্রতিফলন ঘটানো হয়েছে, সেই সাথে শিক্ষার্থীদের বয়স, মেধা ও গ্রহণ ক্ষমতা অনুযায়ী শিখনফল নির্ধারণ করা হয়েছে। এছাড়া শিক্ষার্থীর নৈতিক ও মানবিক মূল্যবোধ থেকে শুরু করে ইতিহাস ও ঐতিহ্য চেতনা, মহান মুক্তিযুদ্ধের চেতনা, শিল্প—সাহিত্য—সংস্কৃতিবোধ, দেশপ্রেমবোধ, প্রকৃতি–চেতনা এবং ধর্ম—বর্ণ–গোত্র ও নারী–পুরুষ নির্বিশেষে সবার প্রতি সমমর্যাদাবোধ জাগ্রত করার চেন্টা করা হয়েছে। একটি বিজ্ঞানমনস্ক জাতি গঠনের জন্য জীবনের প্রতিটি ক্ষেত্রে বিজ্ঞানের স্বতঃস্ফূর্ত প্রয়োগ ও ডিজিটাল বাংলাদেশের রূপকল্প—২০২১ এর লক্ষ্য বাস্তবায়নে শিক্ষার্থীদের সক্ষম করে তোলার চেন্টা করা হয়েছে।

নতুন এই শিক্ষাক্রমের আলোকে প্রণীত হয়েছে মাধ্যমিক স্তরের প্রায় সকল পাঠ্যপুস্তক। উক্ত পাঠ্যপুস্তক প্রণয়নে শিক্ষার্থীদের সামর্থ্য, প্রবণতা ও পূর্ব অভিজ্ঞতাকে গুরুত্বের সজো বিবেচনা করা হয়েছে। পাঠ্যপুস্তকগুলোর বিষয় নির্বাচন ও উপস্থাপনের ক্ষেত্রে শিক্ষার্থীর সৃজনশীল প্রতিভার বিকাশ সাধনের দিকে বিশেষভাবে গুরুত্ব দেওয়া হয়েছে। প্রতিটি অধ্যায়ের শুরুতে শিখনফল যুক্ত করে শিক্ষার্থীর অর্জিতব্য জ্ঞানের ইঞ্জিত প্রদান করা হয়েছে এবং বিচিত্র কাজ, সৃজনশীল প্রশ্ন ও অন্যান্য প্রশ্ন সংযোজন করে মূল্যায়নকে সৃজনশীল করা হয়েছে।

সভ্যতার শুরু থেকেই প্রযুক্তি বিকাশের যে অধ্যায় শুরু হয়েছে তার সাথে পদার্থবিজ্ঞান ওতপ্রোতভাবে জড়িত। প্রকৌশলশাস্ত্র, চিকিৎসা—বিজ্ঞান, জ্যোতির্বিজ্ঞান, সমুদ্রবিজ্ঞান, জীববিজ্ঞান, মনোবিজ্ঞান সর্বত্র পদার্থবিজ্ঞানের পন্ধতি ও যন্ত্রপাতির প্রভূত ব্যবহার রয়েছে। মূলত এ বিষয়গুলোকে সামনে রেখেই পদার্থবিজ্ঞান পাঠ্যপুস্তকটি প্রণয়ন করা হয়েছে। এছাড়া পাঠ্যপুস্তকটি রচনায় আমাদের চারপাশে সংঘটিত বিভিন্ন ঘটনার আলোকে পদার্থবিজ্ঞানের তাত্ত্বিক দিকগুলো ব্যাখ্যা করা হয়েছে। পাশাপাশি বিভিন্ন অনুসন্ধানমূলক কার্যক্রমের মাধ্যমে বিষয়টির ব্যবহারিক গুরুত্ব তুলে ধরা হয়েছে। এই পাঠ্যপুস্তকের বিষয়বস্তু শিক্ষার্থীকে ভবিষ্যতে এ বিষয় সম্পর্কে আরও বেশি আগ্রহী হতে অনুপ্রাণিত করবে। বানানের ক্ষেত্রে অনুসৃত হয়েছে বাংলা একাডেমি কর্তৃক প্রণীত বানানরীতি।

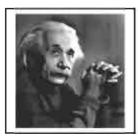
একবিংশ শতকের অজ্ঞীকার ও প্রত্যয়কে সামনে রেখে পরিমার্জিত শিক্ষাক্রমের আলোকে পাঠ্যপুস্তকটি রচিত হয়েছে। শিক্ষাক্রম উনুয়ন একটি ধারাবাহিক প্রক্রিয়া এবং এর ভিত্তিতে পাঠ্যপুস্তক রচিত হয়। সম্প্রতি যৌক্তিক মূল্যায়ন ও ট্রাই আউট কার্যক্রমের মাধ্যমে সংশোধন ও পরিমার্জন করে পাঠ্যপুস্তকটিকে ত্রুটিমুক্ত করা হয়েছে– যার প্রতিফলন বইটির বর্তমান সংস্করণে পাওয়া যাবে।

পাঠ্যপুস্তকটি রচনা, সম্পাদনা, চিত্রাজ্জন, নমুনা প্রশ্নাদি প্রণয়ন, পরিমার্জন ও প্রকাশনার কাজে যারা আল্তরিকভাবে মেধা ও শ্রম দিয়েছেন তাঁদের ধন্যবাদ জ্ঞাপন করছি। পাঠ্যপুস্তকটি শিক্ষার্থীদের আনন্দিত পাঠ ও প্রত্যাশিত দক্ষতা অর্জন নিশ্চিত করবে বলে আশা করি।

প্রফেসর নারায়ণ চন্দ্র সাহা

চেয়ারম্যান জাতীয় শিক্ষাক্রম ও পাঠ্যপুুুুুুুুুুক্ত বোর্ড, বাংলাদেশ

Creative Study Academy


সূচিপত্ৰ

অধ্যায়	বিষয়বস্তৃ	পৃষ্ঠা
প্রথম	ভৌত রাশি ও পরিমাপ	٥
দিতী য়	গতি	২৫
তৃতীয়	বল	89
চতুৰ্থ	কাজ, ক্ষমতা ও শক্তি	৬৬
প্রথা	পদার্থের অবস্থা ও চাপ	৮৬
য ষ্ঠ	বস্তুর উপর তাপের প্রভাব	88
স্গ্ৰম	তরজা ও শব্দ	220
অফ্টম	আলোর প্রতিফলন	১২৫
নবম	আলোর প্রতিসরণ	787
দশম	স্থির তড়িৎ	১৬০
একাদশ	চল তড়িৎ	ኔ ዓ <i>ሮ</i>
ঘাদশ	তড়িতের চৌস্বক ক্রিয়া	ን৯৮
ত্রয়োদশ	আধুনিক পদার্থবিজ্ঞান ও ইলেকট্রনিক্স	২০৯
চতুর্দশ	জীবন বাঁচাতে পদার্থবিজ্ঞান	২২৭

প্রথম অধ্যায়

ভৌত রাশি ও পরিমাপ

PHYSICAL QUANTITIES AND MEASUREMENT

। আমাদের দৈনন্দিন জীবনের প্রতিটি কাজে বিজ্ঞান ওতপ্রোতভাবে জড়িত। ভোরের টুপপেস্ট থেকে শুরু করে সারাদিনে ব্যবহৃত ইন্টারনেট, মোবাইলসহ রাতের টেলিভিশন সবই কৈজানিক আবিন্কারের ফসল। কিজান মানব জীবনকে করেছে সুন্দর ও সমৃন্দ, বাড়িয়ে দিয়েছে আরাম—আয়েল এবং সুখ—স্বাচ্ছন্দ্য। কিন্তু বিজ্ঞানের এই সমৃন্দি একদিনে সম্ভব হয়নি। প্রাচীনকাল থেকে অগণিত বিজ্ঞানীর নিরলস সাধনার ফলে বিজ্ঞান আজকের এই অক্সানে এসে দাঁড়িয়েছে। এই অধ্যায়ে আমরা সেই প্রাচীনকাল থেকে শুরু করে ভৌতবিজ্ঞানের বিশেষ করে পদার্থবিজ্ঞানের বিকাশের একটি সর্ঘক্ষিত অথচ ধারাবাহিক ইতিহাস বর্ণনার মাধ্যমে সেই সব নিবেদিতপ্রাণ বিজ্ঞানীদের কাজের সাথে পরিচয় ঘটানোর চেন্টা করব।

আমাদের দৈনন্দিন জীবনে প্রায় প্রতিটি কাজের সাথে মাপ–জোখের ব্যাপারটি জড়িত। এই মাপ–জোখের বিষয়টাকে বলা হয় পরিমাপ। পদার্থবিজ্ঞানের প্রায় সকল পরীক্ষণেই বিভিন্ন রাশি পরিমাপ করতে হয়। এই অধ্যায়ে আমরা পরিমাপ, পরিমাপের একক, এককের আন্তর্জাতিক পন্থতি, পরিমাপের বিভিন্ন যশত্ত ও এদের ব্যবহার আলোচনা করব।]

এই অধ্যায় পাঠ শেবে আমরা—

8.

- পদার্থবিজ্ঞানের পরিসর ও ক্রমবিকাশ ব্যাখ্যা করতে পারব ।
- ২. ৩. ভৌত রাশি [মান এবং এককসহ] পদার্থবিজ্ঞানের মূল ভিত্তি ব্যাখ্যা করতে পারব ।
- শ্রেলিক রাশি ও লব্দ রাশির পার্থক্য ব্যাখ্যা করতে পারব ।
- ৬. পরিমাপের ভাষ্তর্জাতিক একক ব্যাখ্যা করতে পারব ।
- ৭. রাশির মাত্রা হিসাব করতে পারব।
- ৮. এককের উপসর্গের গুণিতক ও উপগুণিতকের রুপাশ্তরের হিসাব করতে পারব ।
- ৯. কৈজ্ঞানিক পরিভাষা, প্রতীক এবং চিহ্ন ব্যবহার করে পদার্থজ্ঞিনের ধারণা এবং তত্ত্বকে প্রকাশ করতে পারব ।
- ১০. যল্ত্রপাতি ব্যবহার করে ভৌতরাশি পরিমাপ করতে পারব ।
- ১১. পরিমাপে যথার্থতা, নির্ভূলতা বন্ধায় রাখার কৌশল ব্যাখ্যা করতে পারব ।
- ১২. সরদ যদত্রপাতি ব্যবহার করে সুষম আকৃতির বস্তুর ক্ষেত্রফদ ও আয়তন নির্ণয় করতে পারব ।
- ১৩. দৈনন্দিন জীবনে ব্যবহৃত সুষম আকৃতির বস্তুসামগ্রীর দৈর্ঘ্য, ভর, ক্ষেত্রফল ও আয়তন নির্ণয় করতে পারব ।

১.১ পদার্থবিজ্ঞান

Physics

বিজ্ঞানের যে শাখায় পদার্থ ও শক্তি নিয়ে আলোচনা করা হয় সেই শাখাকে বলা হয় পদার্থবিজ্ঞান। পদার্থবিজ্ঞানের মূল লক্ষ্য হচ্ছে পর্যবেক্ষণ, পরীক্ষণ ও বিশ্লেষণের আলোকে বস্তু ও শক্তির রূপান্তর ও সম্পর্ক উদঘাটন এবং পরিমাণগতভাবে তা প্রকাশ করা।

পদার্থবিজ্ঞানের পরিসর

বিজ্ঞানের চাবিকাঠি হলো পদার্থবিজ্ঞান। পদার্থবিজ্ঞান হচ্ছে বিজ্ঞানের একটি মৌলিক শাখা কেননা এর নীতিগুলোই বিজ্ঞানের অন্যান্য শাখাসমূহের ভিন্তি তৈরি করেছে। উদাহরণস্বরূপ, শক্তির সংরক্ষণশীলতা নীতি হচ্ছে পদার্থবিজ্ঞানের একটি মূল নীতি যা হচ্ছে পরমাণুর গঠন থেকে শুরু করে আবহাওয়ার পূর্বাভাস প্রদান পর্যন্ত বিজ্ঞানের বিস্তৃত এলাকার মূল ভিন্তি। প্রকৌশলশাসত্র থেকে শুরু করে চিকিৎসা বিজ্ঞান, জ্যোতির্বিজ্ঞান থেকে শুরু করে সমুদ্রবিজ্ঞান, জীববিজ্ঞান থেকে শুরু করে মনোবিজ্ঞান সর্বত্র পদার্থবিজ্ঞানের পদ্ধতি ও যন্ত্রপাতির প্রভূত ব্যবহার রয়েছে। পঠন পাঠনের সুবিধার জন্য পদার্থবিজ্ঞানকে আমরা প্রধানত নিম্নোক্ত শাখাগুলোতে ভাগ করতে পারি : (১) বলবিজ্ঞান (২) তাপ ও তাপগতিবিজ্ঞান (৩) শব্দবিজ্ঞান (৪) আলোকবিজ্ঞান (৫) তাড়িত চৌম্বকবিজ্ঞান (৬) কঠিন অবস্থার পদার্থবিজ্ঞান (৭) পারমাণবিক পদার্থবিজ্ঞান (৮) নিউক্লীয় পদার্থবিজ্ঞান (৯) কোয়ান্টাম পদার্থবিজ্ঞান (১০) ইলেকট্রনিক্স ইত্যাদি।

পদার্থবিজ্ঞানের ক্রমবিকাশ

আধুনিক সভ্যতা বিজ্ঞানের ফসল। বিজ্ঞানের এই অগ্রগতির পেছনে রয়েছে বিজ্ঞানীদের অক্লান্ট্র পরিশ্রম, নানা আবিষ্কার ও উদ্ভাবন। বিজ্ঞানের কোনো জাতীয় বা রাজনৈতিক সীমা নেই। বিজ্ঞানের উন্নতি, সমৃদ্ধি ও কল্যাণ সকল জাতির সকল মানুষের জন্য। প্রাচীনকাল থেকেই বিজ্ঞানীরা বিজ্ঞানের উন্নয়নে অবদান রেখে আসছেন। আমরা এই অনুছেদে পদার্থবিজ্ঞানীদের অবদান তুলে ধরতে চেন্টা করব। থেলিস (খ্রিস্টপূর্ব ৬২৪–৫৬৯) সূর্যগ্রহণ সম্পর্কিত ভবিষ্যদ্বাণীর জন্য বিখ্যাত। তিনি লোডস্টোনের চৌন্দ্রক ধর্ম সম্পর্কেও জানতেন। বিজ্ঞানের ইতিহাসে পিথাগোরাস (খ্রিস্টপূর্ব ৫২৭–৪৯৭) একটি মরণীয় নাম। বিভিন্ন জ্যামিতিক উপপাদ্য ছাড়াও কম্পমান তারের উপর তাঁর কাজ অধিক স্থায়ী অবদান রাখতে সক্ষম হয়েছিল। বর্তমানে বাদ্যবন্দ্র ও সংগীত বিষয়ক যে স্কেল রয়েছে তা তারের কম্পন বিষয়ক তাঁর অনুসন্ধানের আর্থনিক অবদান।

গ্রিক দার্শনিক ডেমোক্রিটাস (খ্রিস্টপূর্ব ৪৬০–৩৭০) ধারণা দেন যে পদার্থের অবিভাজ্য একক রয়েছে। তিনি একে নাম দেন এটম বা পরমাণু। পারমাণু সম্পর্কে তাঁর এই ধারণা বর্তমান ধারণার চেয়ে সম্পূর্ণ আলাদা হলেও বেশ তাৎপর্যপূর্ণ। গ্রিক বিজ্ঞানী আর্কিমিডিস (খ্রিস্টপূর্ব ২৮৭–২১২) লিভারের নীতি ও তরলে নিমচ্জিত বস্তুর উপর ক্রিয়াশীল উর্ধ্বমুখী বলের সূত্র আবিষ্কার করে ধাতুর ভেজাল নির্ণয়ে সক্ষম হন। তিনি গোলীয় দর্পণের সাহায্যে সূর্যের রশ্মি কেন্দ্রীভূত করে আগুন ধরানোর কৌশলও জানতেন।

আর্কিমিডিসের পর কয়েক শতান্দীকাল বৈজ্ঞানিক আবিষ্কার মন্থর গতিতে চলে। প্রকৃতপক্ষে ত্রয়োদশ শতান্দীর পূর্বে ইউরোপে বৈজ্ঞানিক অনুসন্ধিৎসার পুনজীবন ঘটেনি। এই সময় পশ্চিম ইউরোপীয় সভ্যতা বাইজানটাইন ও মুসলিম সভ্যতার জ্ঞানের ধারা বিশেষভাবে গ্রহণ করেছিল। আরবরা বিজ্ঞান, গণিত, জ্যোতির্বিদ্যা, রসায়ন ও চিকিৎসা বিজ্ঞানেও বিশেষ পারদশী ছিলেন। এই সময় পদার্থবিজ্ঞানের একটি শাখা আলোক তত্ত্বের ক্ষেত্রে ইবনে আল হাইথাম

(৯৬৫-১০৩৯) এবং আল হাজেন (৯৬৫-১০৩৮) এর অবদান বিশেষ উল্লেযোগ্য। টলেমি (১২৭ -১৫১) ও অন্যান্য প্রাচীন বিজ্ঞানীরা বিশ্বাস করতেন যেকোনো বস্তু দেখার জন্য চোখ নিজে আলোক রশ্মি পাঠায়। আল হাজেন এই মতের বিরোধিতা করেন এবং বলেন বস্তু থেকে আমাদের চোখে আলো আসে বলেই আমরা বস্তুকে দেখতে পাই। আতশি কাচ নিয়ে পরীক্ষা তাঁকে উন্তল লেন্সের আধুনিক তন্ত্বের কাছাকাছি নিয়ে আসে। আল—মাসুদী (৮৯৬-৯৫৬) প্রকৃতির ইতিহাস সম্পর্কে একটি এনসাইক্লোপিডিয়া লেখেন। এই বইয়ে বায়ুকলের উল্লেখ পাওয়া যায়। বর্তমানে পৃথিবীর অনেক দেশে এই বায়ুকলের সাহায্যে তড়িৎশক্তি উৎপাদন করা হচ্ছে।

রজার বেকন (১২১৪–১২৯৪) ছিলেন পরীক্ষামূলক বৈজ্ঞানিক পন্ধতির প্রবক্তা। তাঁর মতে পর্যবেক্ষণ ও পরীক্ষণের মাধ্যমেই বিজ্ঞানের সব সত্য যাচাই করা উচিত। লিউনার্দো দ্য ভিঞ্চি (১৪৫২–১৫১৯) পনেরো শতকের শেষদিকে পাথির উড়া পর্যবেক্ষণ করে উড়োজাহাজের একটি মডেল তৈরি করেছিলেন। তিনি মূলত একজন চিত্রশিল্পী হলেও বলবিদ্যা সম্পর্কে তাঁর উল্লেখযোগ্য জ্ঞান ছিল। ফলে তিনি কিছু সাধারণ যন্ত্র দক্ষতার সাথে উদ্ভাবন করতে সক্ষম হন।

গ্যালিলিও —নিউটনীয় যুগে এবং তারও আগে সংখ্যায় কম হলেও কয়েকজন পদার্থবিজ্ঞানী জন্মগ্রহণ করেন। বিজ্ঞানের অগ্রযাত্রায় তারা অপরিসীম অবদানও রাখেন। ডা. গিলবার্ট (১৫৪০—১৬০৩) চুম্বকত্ব নিয়ে বিস্তারিত গবেষণা ও তত্ত্ব প্রদানের জন্য চিরম্মরণীয় হয়ে আছেন। আলোর প্রতিসরণের সূত্র আবিষ্কার করেন জার্মানির স্লেল (১৫৯১—১৬২৬)। হাইগেন (১৬২৬—১৬৯৫) দোলকীয় গতি পর্যালোচনা করেন, ঘড়ির যান্ত্রিক কৌশলের বিকাশ ঘটান এবং আলোর তরজা তত্ত্বের উদ্ধাবন করেন। রবার্ট হুক (১৬৩৫—১৭০৩) পদার্থের স্থিতিস্থাপক ধর্মের অনুসন্ধান করেন। বিভিন্ন চাপে গ্যাসের ধর্ম বের করার জন্য পরীক্ষা—নীরিক্ষা চালান রবার্ট বয়েল (১৬২৭—১৬৯১)। ভন গুয়েরিক (১৬০২—১৬৮৬)) বায়ু পাম্প আবিষ্কার করেন। রোমার (১৬৪৪—১৭১০) বৃহস্পতির একটি উপগ্রহের গ্রহণ পর্যবেক্ষণ করে আলোর বেগ পরিমাপ করেন, কিন্তু তাঁর সমসাময়িক বিজ্ঞানীদের কেউই বিশ্বাস করেননি যে আলোর বেগ এত বেশি হতে পারে।

কোপার্নিকাস যে সৌরকেন্দ্রিক তত্ত্বের ধারণা উপস্থিত করেন কেপলার (১৫৭১–১৬৩০) সেই ধারণার সাধারণ গাণিতিক বর্ণনা দেন তিনটি সূত্রের সাহায্যে। কেপলারের সাফল্যের মূল ভিত্তি হলো, তিনি প্রচলিত বৃত্তাকার কক্ষপথের পরিবর্তে উপবৃত্তাকার কক্ষপথ কল্পনা করেন। গ্রহদের গতিপথ সম্পর্কে তাঁর গাণিতিক সূত্রগুলার সত্যতা তিনি যাচাই করলেন তার গুরু টাইকোব্রাহের (১৫৪৬–১৬০১) পর্যবেক্ষণ লব্দ তথ্যের দ্বারা।

আধুনিক বৈজ্ঞানিক পদ্ধতির সূচনা ঘটে ইতালির বিখ্যাত বিজ্ঞানী গ্যালিলিওর (১৫৬৪–১৬৪২) হাতে। তিনিই প্রথম দেখান যে পর্যবেক্ষণ, পরীক্ষণ এবং সৃশৃঙ্খলভাবে ভৌত রাশির সংজ্ঞা প্রদান ও এদের মধ্যে সম্পর্ক নির্ধারণ বৈজ্ঞানিক কর্মের মূল ভিন্তি। গাণিতিক তত্ত্ব নির্মাণ ও পরীক্ষার মাধ্যমে সে তত্ত্বের সত্যতা যাচাইয়ের বৈজ্ঞানিক ধারার সূচনা করেন গ্যালিলিও। আর এর পূর্ণতা দান করেন নিউটন (১৬৪২–১৭২৭)। গ্যালিলিও সরণ, গতি, ত্বরণ, সময় ইত্যাদির সংজ্ঞা প্রদান ও এদের মধ্যে সম্পর্ক নির্ধারণ করেন। ফলে তিনি বস্তুর পতনের নিয়ম আবিষ্কার ও সৃতিবিদ্যার ভিত্তি স্থাপন করেন। নিউটন তাঁর বিষয়কর প্রতিভার দ্বারা আবিষ্কার করেন বলবিদ্যা ও বলবিদ্যার বিখ্যাত তিনটি সূত্র এবং বিশ্বজ্ঞান মহাকর্ষ সূত্র। আলোক, তাপ ও শব্দবিজ্ঞানেও তার অবদান আছে। গণিতের নতুন শাখা ক্যালকুলাসও তাঁর আবিষ্কার।

অফীদশ ও উনবিংশ শতাব্দীর আবিষ্কার ও উদ্ভাবন ইউরোপকে শিল্প বিপ্লবের দিকে নিয়ে যায়। জেমস ওয়াটের (১৭৩৬–১৮১৯) আবিষ্কৃত বাষ্পীয় ইঞ্জিন শিল্প বিপ্লবের ক্ষেত্রে গুরুত্বপূর্ণ ভূমিকা পালন করে। হ্যান্স ক্রিন্টিয়ান ওয়েরস্টেড (১৭৭৭–১৮৫১) দেখান যে, তড়িৎ প্রবাহের চৌম্বক ক্রিয়া আছে। এই আবিষ্কার মাইকেল ফ্যারাডে (১৭৯১–১৮৬৭), হেনরী (১৭৯৭–১৮৭৯) ও লেঞ্জকে (১৮০৪–১৮৬৫) পরিচালিত করে চৌম্বক ক্রিয়া তড়িৎ প্রবাহ উৎপাদন করে এই ঘটনা আবিষ্কারের দিকে। আসলে এটি হলো যান্ত্রিক শক্তিকে তড়িৎ শক্তিতে রূপান্তরের প্রক্রিয়া আবিষ্কার।

১৮৬৪ সালে জেমস ক্লার্ক ম্যাক্সন্তয়েল (১৮৩১–১৮৭৯) দেখান যে, আলো এক প্রকার তাড়িতটৌম্বক তরজা। তিনি তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রকে একীভূত করে তাড়িতচৌম্বক তত্ত্বের বিকাশ ঘটান। ১৮৮৮ সালে হেনরিখ হার্জন্ত (১৮৫৭–১৮৯৪) একই রকম বিকিরণ উৎপাদন ও উদ্ঘাটন করেন। ১৮৯৬ সালে মার্কনী (১৮৭৪–১৯৩৭) এ রকম তরজা ব্যবহার করে অধিক দূরত্বে মোর্সকোডে সংকেত পাঠানোর ব্যবস্থা করেন। তারও আগে বাঙালি বিজ্ঞানী জগদীশ চন্দ্র বসু (১৮৫৮ — ১৯৩৭) তাড়িতচৌম্বক তরজোর মাধ্যমে এক স্থান থেকে অন্য স্থানে শক্তি প্রেরণ করতে সক্ষম হন। এভাবে বেতার যোগাযোগ জন্মলাভ করে। উনবিংশ শতান্দীর শেষের দিকে রনজেন (১৮৪৫–১৯২৩) এক্সে–রে এবং বেকেরেল (১৮৫২–১৯০৮) ইউরেনিয়ামের তেজস্ক্রিয়তা আবিষ্কার করেন।

বিংশ শতাব্দীতে পদার্থবিজ্ঞানের বিময়কর অগ্রগতি ঘটে। ম্যাক্স প্ল্যাঙ্ক (১৮৫৮–১৯৪৭) আবিষ্কার করেন বিকিরণ সংক্রান্ত কোয়ান্টাম তত্ত্ব। আলবার্ট আইনস্টাইন (১৮৭৯–১৯৫৫) প্রদান করেন আপেক্ষিক তত্ত্ব। এই দুই তত্ত্ব আগেকার পরীক্ষালব্দ ফলাফলকেই শুধু ব্যাখ্যা করেনি, এমন ভবিষ্যঘাণীও প্রদান করেছে যা পরে আরো পরীক্ষা নিরীক্ষা দ্বারা প্রমাণিত হয়েছে। আর্নেস্ট রাদারফোর্ডের (১৮৭১–১৯৩৭) পরমাণু বিষয়ক তত্ত্ব ও নিলস বোরের (১৮৮৫ – ১৯৬২) হাইড্রোজেন পরমাণুর ইলেকট্রন স্তরের ধারণা পারমাণবিক পদার্থবিজ্ঞানের অত্যন্ত গুরুত্বপূর্ণ ধাপ ছিল।

পরবর্তী গুরুত্বপূর্ণ আবিষ্কার ঘটে ১৯৩৮ সালে। এই সময় ওটো হান (১৮৭৯–১৯৬৮) ও স্ট্রেসম্যান (১৯০২–১৯৮০) বের করেন যে, নিউক্লিয়াস ফিশনযোগ্য। ফিশনের ফলে একটি বড় ভর সংখ্যাবিশিষ্ট নিউক্লিয়াস প্রায় সমান ভর সংখ্যা বিশিষ্ট দুটি নিউক্লিয়াসে রূপান্তরিত হয় এবং নিউক্লিয়াসের ভরের একটি অংশ শক্তিতে রূপান্তরিত হয়— জন্ম নেয় নিউক্লীয় বোমা ও নিউক্লীয় চুল্লির। বর্তমানে আমরা নিউক্লিয়াস থেকে যে শক্তি পাছি তা অতীতের সকল উৎস থেকে প্রাশত শক্তির তুলনায় বিপুল। দিন দিন নিউক্লীয় শক্তি শক্তির একটি প্রধান উৎস হিসেবে পরিগণিত হছে। এই শতাদীতেই তাত্ত্বিক পদার্থবিজ্ঞানে বিকাশ লাভ করেছে কোয়ান্টাম তত্ত্ব, আপেক্ষিক তত্ত্ব প্রভৃতি। ঢাকা বিশ্ববিদ্যালয়ের পদার্থবিজ্ঞানের প্রফেসর সত্যেন্দ্র নাথ বসু (১৮৯৪–১৯৭৪) তাত্ত্বিক পদার্থবিজ্ঞানে গুরুত্বপূর্ণ অবদান রাখেন। তিনি প্র্যাজ্কের বিকিরণ সূত্রের বিকল্প প্রতিপাদন উপস্থাপন করেন। তার আরেকটি তত্ত্ব বোস— আইনস্টাইন সংখ্যায়ন নামে পরিচিত। তাঁর অবদানের স্বীকৃতি স্বরূপ একপ্রেণির মৌলিক কণাকে তাঁর নামানুসারে "বোসন" বলা হয়। তিনন্ডন নোবেল পুরস্কার বিজয়ী পদার্থবিজ্ঞানী পাকিস্তানের প্রফেসর আবদুস সালাম (১৯২৬–১৯৯৬), মার্কিন যুক্তরান্ট্রের শেলডন গ্রাশো (১৯৩২–) এবং স্টিভেন ওয়াইনবার্গ (১৯৩৩–) একীভূত ক্ষেত্রতত্ত্বের বেলায় মৌলিক বলগুলোকে একব্রীকরণের ক্ষেত্রে তাড়িত দুর্বল বল আবিষ্কার করে অসামান্য অবদান রাখেন। তারও আগে ভারতীয় নোবেল পুরস্কার বিজয়ী পদার্থবিজ্ঞানী চন্দ্রশেখর ভেংকট রমন (১৮৮৮–১৯৭০) রমনপ্রভাব আবিষ্কার করেন। বিংশ শতান্দীতে চিকিৎসা বিজ্ঞানের অগ্রগতিতে পদার্থবিজ্ঞান রাখছে গুরুত্বপূর্ণ অবদান। চিকিৎসাবিজ্ঞানের বিভিন্ন যন্দ্রপ্রণতি আবিষ্কারের

পাশাপাশি তেজব্রুয় আইসোটোপ বিভিন্ন চিকিৎসায় ব্যবহৃত হয়ে রোগ নিরাময়ের ক্ষেত্রেও অসামান্য অবদান রাখছে। বিশে শতাব্দীতে পদার্থবিজ্ঞানের আরেকটি গুরত্বপূর্ণ অগ্রগতি মহাশূন্যে অভিযান। চাঁদে মানুষের পদার্পণ থেকে শুরু করে মজ্ঞাল গ্রহে অভিযানসহ মহাশূন্য স্টেশনে মাসের পর মাস মানুষের বসবাস জ্ঞানের ক্ষেত্রে অসামান্য অগ্রগতি। কৃত্রিম উপগ্রহ আবহাওয়ার পূর্বাভাস দানে কিংবা যোগাযোগকে সহজ করতে চমৎকার অবদান রাখছে। আর ইলেকট্রনিক্স তো আমাদের দৈনন্দিন জীবনে নিয়ে এসেছে বিপ্লব, পাল্টে দিচ্ছে জীবন যাপন প্রণালি। রেডিও, টেলিভিশন, ডিজিটাল ক্যামেরা, মোবাইল ফোন, আইপ্যাড আর কম্পিউটারের কথা এখন ঘরে ঘরে। বিভিন্ন ইলেকট্রনিক সরঞ্জাম ও কম্পিউটার মানুষের ক্ষমতাকে অনেকখানি বাড়িয়ে দিয়েছে।

১.২ পদার্থবিজ্ঞানের উদ্দেশ্য

Objectives of Physics

পদার্থবিজ্ঞান প্রকৃতির রহস্য উদঘাটন করে: পদার্থবিজ্ঞান হচ্ছে বিজ্ঞানের একটি মৌলিক শাখা কেননা এর নীতিগুলোই বিজ্ঞানের অন্যান্য শাখাসমূহের ভিত্তি তৈরি করেছে। উদাহরণস্বরূপ, শক্তির সংরক্ষণশীলতা নীতি হচ্ছে পদার্থবিজ্ঞানের একটি মূল নীতি যা হচ্ছে পরমাণুর অভ্যন্তরের অবস্থা থেকে শুরু করে আবহাওয়ার পূর্বাভাস দান পর্যন্ত বিজ্ঞানের বিস্তৃত এলাকার মৌল ভিত্তি।

যদিও পদার্থ ও শক্তির অধ্যয়নই পদার্থবিজ্ঞানের মূল কাজ বলে বর্ণনা করা যায়, কিন্তু পদার্থবিজ্ঞানের আসল উদ্দেশ্য হচ্ছে প্রকৃতির রহস্য উদঘাটন তথা প্রকৃতির নিয়মগুলো অনুধাবন করা। বিংশ শতাব্দীর শুরুতে পদার্থবিজ্ঞানীরা আবিষ্কার করলেন যে, পরমাণু ধনাত্মকভাবে আহিত নিউক্লিয়াস দ্বারা গঠিত যার চারপাশে ইলেকট্রন ঘোরে। পরবর্তী পরীক্ষা নিরীক্ষা থেকে পাওয়া যায় যে, নিউক্লিয়াস প্রোটন ও নিউট্রন দ্বারা গঠিত। এখন পদার্থবিজ্ঞানীরা আবিষ্কার করছেন যে, প্রোটন ও নিউট্রন আরও ক্ষুদ্র কণা দ্বারা গঠিত।

পদার্থবিজ্ঞানের গবেষণা প্রাকৃতিক ঘটনাগুলোকে ভালোভাবে বুঝতে এবং ব্যাখ্যা করতে যেমন সাহায্য করে তেমনি বিজ্ঞানের অন্যান্য শাখায় তার প্রয়োগ গুরুত্বপূর্ণ অবদান রাখে। বিজ্ঞানের অন্যান্য শাখায় পদার্থবিজ্ঞানের ব্যবহারই সম্ভবত পদার্থবিজ্ঞানকে বর্তমান বিজ্ঞানের যুগে এর কেন্দ্রে পরিণত করেছে। উনিশ শতকের শেষার্থে ইলেকট্রনের আবিষ্কারই ইলেকট্রন মাইক্রোস্কোপের উদ্ভাবন ঘটিয়েছে যা বস্তুবিজ্ঞান ও কোষ—জীববিজ্ঞানে বিপ্লব এনেছে।

একদিকে পদার্থবিজ্ঞানে যেমন তত্ত্ব সৃষ্টি ও গণিতের প্রয়োগ আছে অপর দিকে এতে ব্যবহারিক উনুয়ন বা বিকাশ যেমন, প্রকৌশলশাস্ত্রও রয়েছে। রসায়ন, ভূ—তত্ত্ব বিজ্ঞান, জ্যোতির্বিজ্ঞান, আবহাওয়াবিজ্ঞান ইত্যাদি সম্পর্কে মৌলিক ব্যাখ্যা ও ধারণা গঠনে পদার্থবিজ্ঞান অত্যন্ত প্রয়োজনীয়। এছাড়া জীববিজ্ঞান, সমুদ্রবিজ্ঞান, মনোবিজ্ঞান ও চিকিৎসাবিজ্ঞানে পদার্থবিজ্ঞানের পম্বতি ও যন্ত্রগাতির প্রভূত ব্যবহার রয়েছে।

পদার্থবিজ্ঞান প্রকৃতির নিয়মগুলো বর্ণনা করে: আমরা যে প্রাকৃতিক জগতে বাস করি, তা কতগুলো নির্দিষ্ট নিয়ম যেমন নিউটনের মহাকর্ষ সূত্র, শক্তির সংরক্ষণশীলতা নীতি ইত্যাদি মেনে চলে। আমরা আমাদের ব্যক্তিগত অভিজ্ঞতা লাভের মাধ্যমে শিশুকাল থেকে এইসব নিয়মনীতি শিখে আসছি। এই জ্ঞান আমাদের জীবনের জন্য অত্যাবশ্যক। প্রকৃতির

কাজের নিয়ম—কানুন আমরা পাল্টাতে পারি না, নিয়মগুলোকে আমরা কাজে লাগাতে পারি। এজন্য প্রয়োজন নিয়মগুলো সম্পর্কে আমাদের প্রচুর জ্ঞান। এছাড়াও আমাদের বাসভূমি এই পৃথিবীতে অনুসন্ধান চালায় পদার্থবিজ্ঞান।

পদার্ধবিজ্ঞানের মৌলিক সূত্রগুলোর অনুসরণে প্রযুক্তির উন্নতি ঘটে: টেলিভিশন কী করে কাজ করে, রকেট কী করে মহাশূন্যে উড়ে যায়, কৃত্রিম উপগ্রহ কীভাবে পৃথিবীর চারপাশে ঘোরে, ইন্টারনেট দিয়ে কীভাবে মূহুর্তে পৃথিবীর একপ্রান্ত থেকে অন্যপ্রান্তে ঘুরে আসা যায়, মোবাইল ফোন কীভাবে কাজ করে, সাবমেরিন কীভাবে পানিতে ডুবে থাকে ইত্যাদি বুঝতে হলে আমাদের পদার্থবিজ্ঞানের মৌলিক সূত্রগুলো জানতে হবে। এই সব প্রযুক্তির উদ্ভাবনের মূলে কাজ করছে পদার্থবিজ্ঞানে আবিষ্কৃত নিয়মাবলি।

পদার্থবিজ্ঞান অধ্যয়ন একটি প্রকৃষ্ট মানবিক প্রশিক্ষণ: পদার্থবিজ্ঞান পাঠে আমরা নতুন ধারণা লাভ করতে পারি। কী করে চিন্তা করতে হয়, কারণ দর্শাতে হয়, যুক্তি দিতে হয়, কীভাবে যুক্তিবিজ্ঞান ও এর নিকট আত্মীয় গণিতকে কাজে লাগাতে হয় পদার্থবিজ্ঞান তা আমাদের শিখিয়ে থাকে। এটি আমাদের কল্পনাকে উদ্দীপত করে এবং চিন্তা শক্তির বিকাশ ঘটায়।

পদার্ধবিজ্ঞান আমাদের পর্যবেক্ষণ করতে শেখায় : পদার্থবিজ্ঞান পাঠের মাধ্যমে আমরা আমাদের পর্যবেক্ষণ ক্ষমতা বৃদ্ধি করতে পারি। কী করে সঠিক পদ্ধতিগত পর্যবেক্ষণ করতে হয়, পদার্থবিজ্ঞান পাঠে তা আমরা জানতে পারি।

১.৩ ভৌত রাশি

Physical quantities

এ ভৌত জগতে যা কিছু পরিমাপ করা যায় তাকে আমরা রাশি বিল। যেমন তোমার সামনের ডেস্কের দৈর্ঘ্য পরিমাপ করা যায়, দৈর্ঘ্য একটি রাশি। তোমার দেহের ভর পরিমাপ করা যায়, ভর একটি রাশি। তুমি কতক্ষণ ধরে স্কুলে আছ সেই সময় মাপা যায়, সময় একটি রাশি। তুমি যদি একটি বইকে উপরে উঠাও, তাহলে কতটুকু কাজ করলে তা পরিমাপ করা যায়, সূতরাং কাজ একটি রাশি। এ ভৌত জগতে এর্প বহু রাশি আছে। এই সকল রাশির মধ্যে মাত্র কয়েকটি রাশি আছে যেগুলো পরিমাপ করতে অন্য কোনো রাশির সাহায্য প্রয়োজন হয় না। এ রাশিগুলো মৌলিক রাশি। যেমন ডেস্কের দৈর্ঘ্য মাপতে গেলে কেবল দৈর্ঘ্য মাপলেই চলে। এ দৈর্ঘ্য মাপার জন্য অন্য কোনো রাশি মাপতে হয় না বা অন্য কোনো রাশির সাহায্য দরকার হয় না। সূতরাং দৈর্ঘ্য একটি মৌলিক রাশি। অপরদিকে কয়েকটি রাশি ছাড়া অপর যে সকল রাশি আছে সেগুলো মাপতে হলে অন্য রাশির দরকার হয়। যেমন তামার ঘনত্ব পরিমাপ করতে হলে এক খন্ড তামার তর এবং আয়তন পরিমাপ করতে হবে এবং তরকে আয়তন দিয়ে ভাগ করে ঘনত্ব বের করতে হবে। আবার আয়তন মাপতে হলে দৈর্ঘ্য, প্রস্থ ও উচ্চতা মাপতে হবে অর্থাৎ তিনবার বা তিনদিকে দৈর্ঘ্য মাপতে হবে। সূতরাং, দেখা যাচ্ছে কিছু কিছু রাশি আছে, যেগুলো মূল রাশি; এগুলো অন্য রাশির উপর নির্ভর করে না। এই রাশিগুলোকে মৌলিক রাশি বলা হয়।

সূতরাং যে সকল রাশি স্বাধীন বা নিরপেক্ষ যেগুলো অন্য রাশির উপর নির্ভর করে না বরং অন্যান্য রাশি এদের উপর নির্ভর করে তাদেরকে মৌলিক রাশি বলে। জ্ঞান বিজ্ঞানের সকল শাখা প্রশাখায় মাপ—জোখের ক্ষেত্রে বিজ্ঞানীরা এরূপ

সাতটি রাশিকে মৌলিক রাশিরূপে চিহ্নিত করেছেন। এগুলো হলো (১) দৈর্ঘ্য (২) ভর (৩) সময় (৪) তাপমাত্রা (৫) তড়িৎ প্রবাহ (৬) দীপন তীব্রতা ও (৭) পদার্থের পরিমাণ।

আর অন্য সকল রাশি মৌলিক রাশিগুলো থেকে লাভ করা যায় অর্থাৎ এক বা একাধিক মৌলিক রাশির গুণফল বা ভাগফল থেকে প্রতিপাদন করা যায়। এদেরকে বলা হয় লব্দ রাশি বা যৌগিক রাশি।

সূতরাং যে সকল রাশি মৌলিক রাশির উপর নির্ভর করে বা মৌলিক রাশি থেকে লাভ করা যায় তাদেরকে লব্ধ রাশি বলে।

বেগ, ত্বরণ, বল, কাজ, তাপ, তড়িৎ বিভব ইত্যাদি রাশিগুলো মৌলিক রাশিসমূহ থেকে লাভ করা যায় বলে এগুলো লধ্ব রাশি।

যেমন:

বল = ভর
$$\times$$
 ত্বরণ
= ভর $\times \frac{বেগ}{সময়}$
= ভর $\times \frac{rূরত্ব}{সময়^2}$

সুতরাং, বল একটি লব্ধ রাশি।

১.৪ পরিমাপের একক

Units of measurements

আমাদের দৈনন্দিন জীবনে প্রায় প্রতিটি কাজের সাথে মাপ–জোখের ব্যাপারটি জড়িত। এ ছাড়াও বিভিন্ন গবেষণার কাজে প্রয়োজন হয় সৃক্ষ মাপ–জোখের। আমাদের দৈনন্দিন জীবনের এই মাপ–জোখের বিষয়টাকে বলা হয় পরিমাপ। সাধারণভাবে পরিমাপ বলতে বুঝায় কোনো কিছুর পরিমাণ নির্ণয় করা। যেমন, রিজুর বাড়ি থেকে স্কুলের দূরত্ব 700 মিটার। সোহেল দোকান থেকে 5 কিলোগ্রাম চাল কিনে আনল। রিনার ক্লাস থেকে অফিস রুমে যেতে 50 সেকেন্ড সময় লাগে। এখানে 700 মিটার হলো বাড়ি থেকে দূরত্বের পরিমাণ। 5 কিলোগ্রাম হলো কিনে আনা চালের ভরের পরিমাণ এবং 50 সেকেন্ড হলো সময়ের পরিমাণ। কোনো কিছুর পরিমাণ নির্ণয় করতে হলে আমাদের দুইটি জিনিসের প্রয়োজন হয়। একটি সংখ্যা আর একটি একক।

যেকোনো পরিমাপের জন্য প্রয়োজন একটি স্ট্যাভার্ড বা আদর্শ পরিমাণের যার সাথে তুলনা করে পরিমাপ করা যায়। পরিমাপের এই আদর্শ পরিমাণকে বলা হয় পরিমাপের একক। মনে করা যাক, কোনো লাঠির দৈর্ঘ্য 4 মিটার। এখানে মিটার হলো দৈর্ঘ্যের একক এবং 1 মিটার বলতে কিছু একটা দৈর্ঘ্য আছে। আর লাঠির দৈর্ঘ্য 4 মিটার বলতে বুঝায় লাঠিটির দৈর্ঘ্য 1 মিটারের 4 গুণ। সময়, আয়তন, বেগ, ভর, বল, শক্তি, তাপমাত্রা, তড়িৎ প্রবাহ ইত্যাদি মাপার জন্য ভিন্ন একক রয়েছে। এ এককগুলো এমনভাবে ঠিক করা হয়েছে যাতে এগুলো হয় সুবিধাজনক আকারের এবং সহজে ও সঠিকভাবে তা পুনরুৎপাদন করা যায়। এই এককের কয়েকটি ছাড়া বাকিগুলো আবার পরস্পর সম্পর্কযুক্ত।

এসন্থাই (SI)-এর মৌলিক এককসমূহ:

মৌলিক রাশির এককসমূহ যেহেতু অন্য এককগুলোর উপর নির্ভর করে না, তাই মৌলিক একক ইচ্ছেমতো নির্বাচন করা যায়। কিন্তু সেই নির্বাচনের আন্তর্জাতিক স্বীকৃতি থাকতে হবে। এর কয়েকটি বৈশিষ্ট্যও থাকতে হবে। যেমন এটি হতে হবে অপরিবর্তী— স্থান, কাল, পাত্র কোনো কিছুর উপর নির্ভর করবে না। কালের বিবর্তনে বা অন্য কোনো প্রাকৃতিক পরিবর্তনের ফলে এর কোনো পরিবর্তন হবে না। সহজে এককটি পুনরুৎপাদন করা যাবে। 1960 সালে এককের আন্তর্জাতিক পন্থতি চালুর সময় মৌলিক এককগুলোর যে আদর্শ বা স্ট্যান্ডার্ড গ্রহণ করা হয়েছিল পরবর্তীকালে উপরোক্ত বৈশিষ্ট্যগুলো অর্জনের লক্ষ্যে এদের অনেকগুলোর আদর্শ বদল করা হয়েছে, কিন্তু তাতে এককগুলোর মানের কোনো পরিবর্তন হয়নি। যেমন এখন আলোর অতিক্রান্ত দূরত্ব দিয়ে মিটারকে সংজ্ঞায়িত করা হয়, তার আগে এক প্রকার আলোর তরক্ষাদৈর্ঘ্যের সাহায্যে মিটারের সংজ্ঞা দেওয়া হতো। তারও আগে প্যারিসের নিকটে স্যান্রেতে রাখা একটি দন্ডের দৈর্ঘ্যকে মিটারের আদর্শ ধরা হতো। নিচে আন্তর্জাতিক পন্ধতিতে মৌলিক এককগুলোর জন্য সর্বশেষ গৃহীত আদর্শ বর্ণনা করা হলো।

দৈর্ঘ্যের একক মিটার : শূন্যস্থানে আলো $\frac{1}{299\,792\,458}$ সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে 1 মিটার (m) বলে 1

ভরের একক কিলোগ্রাম : ফ্রান্সের স্যান্রেতে ইন্টারন্যাশনাল ওয়েটস এন্ড মেজারসে রক্ষিত প্লাটিনাম—ইরিডিয়াম সংকর ধাতুর তৈরি একটি সিলিভারের ভরকে 1 কিলোগ্রাম (kg) বলে। এই সিলিভারটির ব্যাস 3.9 cm এবং উচ্চতা 3.9 cm।

সময়ের একক সেকেন্ড : একটি সিজিয়াম -133 পরমাণুর 9192631770 টি স্পন্দন সম্পন্ন করতে যে সময় লাগে তাকে 1 সেকেন্ড (s) বলে।

ভাগমাত্রার একক কেলভিন : পানির ত্রৈধ বিন্দুর তাপমাত্রার $\frac{1}{273.16}$ ভাগকে 1 কেলভিন (K) বলে।

তড়িৎ প্রবাহের একক জ্যাম্পিয়ার : শূন্যস্থানে 1 মিটার দূরত্বে অবস্থিত অসীম দৈর্ঘ্যের এবং উপক্ষেণীয় বৃত্তাকার প্রস্থচ্ছেদের দুটি সমান্তরাল সরল পরিবাহীর প্রত্যেকটিতে যে পরিমাণ তড়িৎ প্রবাহ চললে পরস্পরের মধ্যে প্রতি মিটার দৈর্ঘ্যে 2×10^{-7} নিউটন বল উৎপন্ন হয় তাকে 1 অ্যাম্পিয়ার (A) বলে।

দীপন তীব্রতার একক ক্যান্ডেলা : ক্যান্ডেলা হচ্ছে সেই পরিমাণ দীপন তীব্রতা যা কোনো আলোক উৎস একটি নির্দিষ্ট দিকে 540×10^{12} হার্জ কম্পাঙ্কের এক বণী বিকিরণ নিঃসরণ করে এবং ঐ নির্দিষ্ট দিকে তার বিকিরণ তীব্রতা হচ্ছে প্রতি স্টেরেডিয়ান ঘনকোণে $\frac{1}{683}$ ওয়াট।

পদার্থের পরিমাণের একক মোল : যে পরিমাণ পদার্থে 0.012 কিলোগ্রাম কার্বন— 12 এ অবস্থিত পরমাণুর সমান সংখ্যক প্রাথমিক ইউনিট (যেমন পরমাণু, অণু, আয়ন, ইলেকট্রন ইত্যাদি বা এগুলোর নির্দিষ্ট কোনো গ্রুপ) থাকে তাকে 1 মোল (mol) বলে।

সারণি মৌশিক রাশি ও তাদের একক

রাশি	রাশির প্রতীক	এসভাই একক	এককের প্রতীক
১.দৈর্ঘ্য (length)	l	মিটার (meter)	m
২. ভর (mass)	m	কিলোগ্রাম (kilogram)	kg
৩. সময় (time)	t	সেকেন্ড (second)	S
৪. তাপমাত্রা (temperature)	θ, Τ	কেশভিন (kelvin)	K
৫. তড়িৎ প্রবাহ (electric current)	I	অ্যাম্পিয়ার (ampere)	A
৬. দীপন তীব্রতা (luminous intensity)	$I_{ u}$	ক্যান্ডেলা (candela)	Cd
৭. পদার্থের পরিমাণ (amount of substance)	n	মোল (mole)	mol

এককের গুণিতক ও উপগুণিতক

অনেক সময় মৌলিক এককগুলোর ভগ্নাংশ বা গুণিতক ব্যবহার করা সুবিধাজনক হয়। যখন একটি রাশির মান খুব বড় বা খুব ছোট হয়, তখন নিচের সারণিতে বর্ণিত উপসর্গগুলো খুবই প্রয়োজনীয় হয়। উদাহরণস্বরূপ আমরা যদি বাতাসের দুইটি অণুর মধ্যকার দূরত্ব বিবেচনা করি, তাহলে দেখি যে এই দূরত্ব খুবই ছোট। এটি হচ্ছে 0.000 00001 m। আমরা যদি বার বার এই সংখ্যাটা ব্যবহার করি, তাহলে আমাদের সাবধান থাকতে হবে প্রতি ক্ষেত্রে শুন্যের সংখ্যা ঠিকমতো উল্লেখ করা হয়েছি কিনা? কিন্তু এই সংখ্যাটাকেই যদি আমরা একটা উপসর্গ ব্যবহার করে লিখি, তাহলে 0.000 00001 m কে হয়তো লিখব 0.01 μm, এখানে 'μ' (মাইক্রো) উপসর্গটি 10^{-6} নির্দেশ করে। তেমনিভাবে যদি বলি আমাদের নবনির্মিত বিদ্যুৎ উৎপাদন কেন্দ্রের ক্ষমতা 2000 000 000 W। এটাকে যদি আমরা 2000 × $10^6~\mathrm{W} = 2000~\mathrm{MW}$ হিসেবে প্রকাশ করি তাহলে সুবিধা হয়। এককগুলোর পূর্বে দশের সূচকের নিম্নোক্ত উপসর্গগুলো আন্তর্জাতিক প্রাতি তে ব্যবহার অনুমোদিত।

গুণিতক/উপগৃণিতক	উৎপাদক	সংকেত	উদাহরণ
এক্সা (exa)	10 ¹⁸	Е	1 এক্সামিটার = 1 Em = 10 ¹⁸ m
পেটা (peta)	10 ¹⁵	P	1 পেটামিটার = 1 Pm=10 ¹⁵ m
টেরা (tera)	10 ¹²	T	1 টেরাগ্রাম = 1 Tg= 10 ¹² g
গিগা (giga)	109	G	1 গিগাবাইট = 1 GB= 10 ⁹ B
মেগা (mega)	10 ⁶	M	1 মেগাওয়াট = 1 MW=10 ⁶ W
কিলো (kilo)	10 ³	k	1 কিলোভোল্ট = 1 kV=10 ³ V
হেক্টো (hecto)	10 ²	h	1 হেক্টোজুল = 1hJ=10 ² J
ডেকা (deca)	10 1	da	1 ডেকানিউটন = 1 daN=10 ¹ N
ডেসি (deci)	10 ⁻¹	d	1 ডেসিও ম = $1\mathrm{d}\Omega$ = 10^{-1} Ω
সেন্টি (centi)	10-2	С	1 সেন্টিমিটার= 1 cm= 10 ⁻² m

গুণিতক/উপগুণিতক	উৎপাদক	সংক্তে	উদাহরণ
মিলি (milli)	10 ⁻³	m	1 মিলিঅ্যাম্পিয়ার = 1 mA= 10 ⁻³ A
মাইক্রো (micro)	10-6	μ	1 মাইক্রোভোল্ট =1 μV= 10 ⁻⁶ V
ন্যানো (nano)	10-9	n	1 ন্যানোসেকেন্ড = 1 ns=10 ⁻⁹ s
পিকো (pico)	10-12	p	1 পিকোফ্যারাড = $1~\mathrm{pF}$ = $10^{-12}~\mathrm{F}$
ফেমটো (femto)	10-15	f	1 ফেমটোমিটার = 1 fm=10 ⁻¹⁵ m
অটো (atto)	10-18	a	1 অটোওয়াট = 1 aW=10 ⁻¹⁸ W

কোনো সংখ্যাকে 10 এর যেকোনো ঘাত এবং 1 থেকে 10 -এর মধ্যে অপর সংখ্যার গুণফল হিসেবে প্রকাশ করা হলে তাকে বৈজ্ঞানিক প্রতীক বলে। যেমন 6733000000 হলো 6.733×10^9 এবং 0.00000846 হলো 8.46×10^{-6} । সূতরাং দেখা যাচ্ছে যে এ প্রতীকে প্রকাশিত সংখ্যাটির 10 -এর ধনাত্মক সূচক যত, দশমিক বিন্দুকে ডানদিকে ততঘর সরালে মূল সংখ্যাটি পাওয়া যায়। আর 10 এর ঋণাত্মক সূচক যত দশমিক বিন্দুকে বামদিকে তত ঘর সরালে মূল সংখ্যাটি পাওয়া যায়।

বৈজ্ঞানিক প্রতীকে প্রকাশিত সংখ্যার ক্ষেত্রে গুণের নিম্নোক্ত সাধারণ নিয়মটি খাটে :

$$10^{\rm m} \times 10^{\rm n} = 10^{\rm m+n}$$

এখানে m এবং n যেকোনো সংখ্যা — ধনাত্মক বা ঋণাত্মক হতে পারে।

যেমন
$$10^6 \times 10^7 = 10^{13}$$
, $10^7 \times 10^{-20} = 10^{-13}$

ভাগের ক্ষেত্রেও নিম্নোক্ত নিয়মটি প্রযোজ্য

$$\frac{10^{\rm n}}{10^{\rm m}} = 10^{\rm n} \div 10^{\rm m} = 10^{\rm n-m}$$

যেমন
$$10^6 \div 10^4 = 10^2$$
 বা $10^3 \div 10^{-7} = 10^{3-(-7)} = 10^{10}$

১.৫ মাত্রা

Dimensions

আমরা ইতোমধ্যে জেনেছি যে, কোনো ভৌত রাশি এক বা একাধিক মৌলিক রাশির সমন্বয়ে গঠিত। সুতরাং যে কোনো ভৌত রাশিকে বিভিন্ন সূচকের (power) এক বা একাধিক মৌলিক রাশির গুণফল হিসেবে প্রকাশ করা যায়। কোনো ভৌত রাশিতে উপস্থিত মৌলিক রাশিগুলোর সূচককে রাশিটির মাত্রা বলে।

তাপমাত্রার মাত্রা হলো Θ (বড় হাতের গ্রিক অক্ষর θ), তড়িৎ প্রবাহের মাত্রা হলো I, দীপন তীব্রতার মাত্রা হলো J এবং পদার্থের পরিমাণের মাত্রা হলো N ।

মাত্রা বিশ্লেষণের মাধ্যমে আমরা কোনো সমীকরণ বা ফর্মুলার সঠিকতা যাচাই করতে পারি। উদাহরণস্বরূপ

$$s = ut + \frac{1}{2}at^2$$

সমীকরণটি বিবেচনা করা যাক। আমরা জানি কেবলমাত্র একই জাতীয় রাশির যোগ, বিয়োগ বা সমতা সম্ভব। সূতরাং একটি সমীকরণের প্রতিটি পদ অবশ্যই একই জাতীয় রাশিকে নির্দেশ করতে হবে, অর্থাৎ প্রতিটি পদের মাত্রা একই হতে হবে। এখন উপরোক্ত সমীকরণে তিনটি পদ আছে, বাঁদিকে একটি এবং ডানদিকে দুইটি। এই সমীকরণে

 $_{S}$ হলো সরণ, এর মাত্রা L

 $oldsymbol{u}$ হলো আদি বেগ, এর মাত্রা $\dfrac{L}{T} = L T^{-1}$

$$a$$
 হলো ত্বরণ, এর মাত্রা $rac{L}{T^2}\!=\!LT^{-2}$

t হলো সময়, এর মাত্রা T

 $\therefore ut$ – এর মাত্রা হলো $LT^{-1} \times T = L$

 at^2 এর মাত্রা হলো $LT^{-2} \times T^2 = L$

দেখা যাচ্ছে উপরোক্ত সমীকরণের বামদিকের পদটির মাত্রা L এবং ডান দিকের দুইটি পদের মাত্রাওL। সুতরাং, সমীকরণটি সিদ্ধ।

১.৬ বৈজ্ঞানিক প্রতীক ও সংকেত

Scientific symbols and notations

বলা হয়ে থাকে পদার্থবিজ্ঞানের ভাষা হচ্ছে গণিত। পদার্থবিজ্ঞানের সূত্রগুলোকে আমরা সাধারণত গাণিতিক সমীকরণ আকারে প্রকাশ করে থাকি। সেই সূত্র বা সমীকরণকে কান্ধে লাগিয়ে পদার্থবিজ্ঞানীরা বিভিন্ন সমস্যা সমাধান করে থাকেন। এর জন্য বিভিন্ন রাশির বা এককের জন্য বিভিন্ন সংকেত ও প্রতীক ব্যবহার করা হয় এবং তা করা হয় এককের আন্তর্জাতিক পদ্ধতি অনুসরণ করে। শুধু পদার্থবিজ্ঞানই নয়, যেকোনো বিষয়ে তথা জ্ঞান বিজ্ঞানের যে কোনো শাখা প্রশাখায়ই পরিমাপ করতে গিয়ে আজকাল এককের আন্তর্জাতিক পদ্ধতি ব্যবহৃত হচ্ছে।

এককের সংকেত ও বিভিন্ন রাশির মান লেখার জন্য এই বইয়ে নিম্নোক্ত পন্ধতি অনুসরণ করা হয়েছে।

- ১। কোনো রাশির মান প্রকাশ করার জন্য একটি সংখ্যা লিখে তারপর একটি ফাঁক (ফাকা জায়গা বা space যা আসলে গুণ বুঝায়) রেখে এককের সংকেত লিখে প্রকাশ করতে হয়। যেমন "2.21 kg", "7.3×10² m²", "22 K"। শতকরা চিহ্নও (%) এই নিয়ম মেনে চলে। কিন্তু ব্যতিক্রম হচ্ছে কোণের একক তথা ডিগ্রি, মিনিট বা সেকেভ (°, ' এবং ") লেখার সময়। এই সকল ক্ষেত্রে সংখ্যার ক্ষেত্রে কোনো ফাঁক (space) দিতে হয় না।
- ২। গুণনে প্রাশ্ত লব্ধ একক লেখার সময় দুই এককের মাঝখানে একটা ফাঁক (space) দিতে হয় যেমন N m.

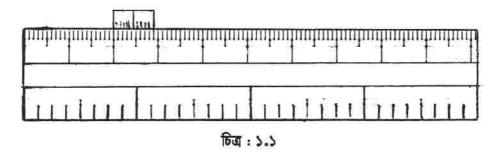
৩। ভাগ দ্বারা গঠিত লব্ধ এককের ক্ষেত্রে ঋণাত্মক সূচক হিসেবে প্রকাশ করা হয়েছে। যেমন মিটার / সেকেন্ড (মিটার প্রতি সেকেন্ড metre per second) কে m $m s^{-1}$ দিয়ে প্রকাশ করা হয়েছে।

- ৪। প্রতীকগুলো যেহেতু গাণিতিক প্রকাশ, কোনো কিছুর সংক্ষিপত রূপ (abbreviations) নয়, কাজেই তাদের সাথে কোনো যতি চিহ্ন বা ফুল স্টপ [full stop (.)] ব্যবহৃত হয় না।
- ৫। এককের সংকেত লেখা হয় সোজা অক্ষরে (Roman type) যেমন মিটারের (metre) জন্য m, সেকেন্ডের জন্য s ইত্যাদি। কোনো রাশির সংকেত লিখতে হয় বাঁকা হরফে (italic type) যেমন ভরের (mass) জন্য m, সরণের (displacement) জন্য s ইত্যাদি। এই সকল রাশির সংকেত ও একক লেখার সময় আগে পরে কোন ভাষার কোন ফন্ট (font) ব্যবহার করা হয়েছে, তাতে কিছু যায় আসে না।
- ৬। এককের সংকেত ছোট হাতের হরফে (lower case) লেখা হয় (যেমন "m", "s", "mol")। তবে যে সকল একক ব্যক্তির নাম থেকে নেওয়া হয়েছে সেগুলোর সংকেত লেখার সময় (এক অক্ষরের হলে) বড় হাতের হরফে বা প্রথম অক্ষর (একাধিক অক্ষরের ক্ষেত্রে) বড় হাতের হরফে হবে। যেমন নিউটনের নামানুসারে গৃহীত একক নিউটন হবে N এবং প্যাস্কালের নামানুসারে গৃহীত একক হবে Pa। তবে পুরো একক লিখলে অবশ্যই ছোট হাতের হরফে হবে যেমন newton বা pascal।
- ৭। এককের উপসর্গ এককেরই অংশ বিধায় এর সংকেত এককের সাথে কোনো ফাঁক ছাড়াই যুক্ত হয়। যেমন km–এ k, MW এ M, GHz–এ G। একাধিক উপসর্গ অনুমোদিত নয় যেমন $\mu\mu F$ হবে না, হবে pF।
- ৮। কিলো (10^3) এর চেয়ে বড় সকল উপসর্গ বড় হাতের হরফে হবে।
- ৯। এককের সংকেতগুলোর কখনো বহুবচন হয় না। যেমন "25 kg", হবে, কিন্তু "25 kgs" হবে না।
- ১০। কোনো সংখ্যা বা কোনো যৌগিক একক বা সংখ্যা ও একক দুই লাইনে লেখা (line-break) পরিহার করা উচিত। খুব প্রয়োজন হলে সংখ্যা ও একককে দুই ভাগ করা যেতে পারে (line-break)।

১.৭ পরিমাপের যশত্রপাতি

Measuring instruments

মিটার স্কেল


পরীক্ষাগারে দৈর্ঘ্য পরিমাপের সবচেয়ে সরল যশ্ত্র হলো মিটার স্কেল। এর দৈর্ঘ্য 1 মিটার বা 100 সেন্টিমিটার। এজন্য একে মিটার স্কেল বলা হয়। এই স্কেলের এক পাশ সেন্টিমিটার এবং অপর পাশ ইঞ্চিতে দাগ কাটা থাকে। প্রত্যেক সেন্টিমিটারকে সমান দশ ভাগে ভাগ করা থাকে। এই প্রত্যেক ভাগকে বলা হয় 1 মিলিমিটার বা 0.1 সেন্টিমিটার। প্রত্যেক ইঞ্চিকে সমান আট ভাগ, দশ ভাগ বা ষোলো ভাগে ভাগ করা হয়।

মিটার স্কেলের সাহায্যে পরিমাপ: মিটার স্কেলের সাহায্যে যে দণ্ড বা কাঠির দৈর্ঘ্য মাপতে হবে তার একপ্রান্ত স্কেলের 0 দাগে বা কোনো সুবিধাজনক দাগে স্থাপন করতে হবে। দণ্ডের অপর প্রান্তে স্কেলের যে দাগের সাথে মিশেছে তার পাঠ নিতে হবে। দণ্ডের দুই প্রান্তের পাঠের বিয়োগফল হলো দণ্ডের দৈর্ঘ্য। সাধারণভাবে যে দণ্ডের

দৈর্ঘ্য মাপতে হবে তার বাম প্রান্ত স্কেলের x দাগে স্থাপন করলে যদি তান প্রান্ত y দাগের সাথে মিশে যায় তবে দন্তের দৈর্ঘ্য L=y-x। এ স্কেলের সাহায্যে মিলিমিটার পর্যন্ত দৈর্ঘ্য সঠিকভাবে মাপা যায়। এর চেয়ে সূক্ষ পরিমাপ করতে হলে ব্যবহার করতে হয় ভার্নিয়ার স্কেল।

ভার্নিয়ার স্কেল

সাধারণ মিটার স্কেলে আমরা মিলিমিটার পর্যন্ত দৈর্ঘ্য মাপতে পারি। মিলিমিটারের ভগ্নাংশ যেমন 0.2 মিলিমিটার, 0.6 মিলিমিটার বা 0.8 মিলিমিটার ইভ্যাদি মাপতে হলে আমাদের ব্যবহার করতে হয় ভার্নিয়ার স্কেল। গণিত শাসত্রবিদ পিয়েরে ভার্নিয়ার এ স্কেল আবিষ্কার করেন। তাঁর নামানুসারে এ স্কেলের নাম ভার্নিয়ার স্কেল।

মূল স্কেলের ক্ষুদ্রতম তাগের তগ্নাংশের নির্ভূল পরিমাপের জন্য মূল স্কেলের পাশে যে ছোট আর একটি স্কেল ব্যবহার করা হয় তার নাম তার্নিয়ার স্কেল। তার্নিয়ার স্কেলকে মিটার স্কেলের সাথে ব্যবহার করে মিলিমিটারের তগ্নাংশ সঠিকতাবে নির্ণয় করা যায়।

ভার্নিয়ার স্কেল মূল বা প্রধান স্কেলের পালে সংযুক্ত থাকে এবং প্রধান স্কেলের পাশ দিয়ে সামনে বা পেছনে সরানো যায়। ধরা যাক, একটি ভার্নিয়ার স্কেলে দশটি ভাগ আছে তথা দশটি দাগ কাটা আছে। এই দশ ভাগ প্রধান স্কেলের নয়টি ক্ষুদ্রতম ভাগের সমান (চিত্র : ১.১)। প্রধান স্কেলের নয়টি ক্ষুদ্রতম ভাগ হলো 9 মিলিমিটার বা 0.9 সেন্টিমিটার। ভার্নিয়ার স্কেলের 10 ভাগ যেহেতু প্রধান স্কেলের 9 ক্ষুদ্রতম ভাগের সমান। সূতরাং ভার্নিয়ার স্কেলের ভাগারুলো প্রধান স্কেলের ক্ষুদ্রতম ভাগের চেয়ে ভার্নিয়ার স্কেলের ভাগারুলো প্রধান স্কেলের ক্ষুদ্রতম ভাগের চেয়ে ভার্নিয়ার স্কেলের এক ভাগ কতটুকু ছোট তার পরিমাণকে বলা হয় ভার্নিয়ার ধ্রক (Vernier Constant)। একে সাধারণত VC লেখা হয়। একটি সহজ সূত্র ঘারা ভার্নিয়ার ধ্রক নির্ণয় করা যায় তা হলো, ভার্নিয়ার ধ্রক = $\frac{S}{n}$ যেখানে S প্রধান স্কেলের 1 ক্ষুদ্রতম ভাগের দৈর্ঘ্য এবং n ভার্নিয়ারের ভাগের সংখ্যা।

উপরোক্ত ক্ষেত্রে s = 1 মিমি এবং n = 10 ভাগ

∴ ভার্নিয়ার ধ্রক =
$$\frac{s}{n} = \frac{1 \text{ মিমি}}{10} = 0.1 \text{ মিমি} = 0.01 সেমি$$

কোনো কোনো সময় ভার্নিয়ার স্কেলের 20 ভাগ প্রধান স্কেলের 19 ক্ষুদ্রতম ভাগের সমান থাকে এবং প্রধান স্কেলের এক ক্ষুদ্রতম ভাগ 1 mm –এর চেয়ে কম থাকে। তখন ভার্নিয়ার ধ্রবক পরিবর্তিত হয়ে যায়। ভার্নিয়ার ধ্রবক নির্ভর করে প্রধান স্কেল ও ভার্নিয়ার স্কেলের দাগ কাটার বৈশিক্ট্যের উপর।

ক্লাইড ক্যালিপার্স

ক্লাইড ক্যালিপার্সের অপর নাম ভার্নিয়ার ক্যালিপার্স। কারণ এই যম্প্রে মাপজােধের কেলায় ভার্নিয়ার পশ্বতি ব্যবহার করা হয়। একটি আয়তকার ইস্পাত দড়ের গায়ে দাগ কেটে ক্লাইড ক্যালিপার্সের মূল বা প্রধান স্কেল তৈরি করা হয়। প্রধান স্কেলের যে প্রান্তে শূন্য দাগ কাটা থাকে অর্থাৎ যে প্রান্ত থেকে স্কেলের সূচনা হয় সেই প্রান্তে একটি ধাতব চােয়াল আটকানাে থাকে। মূল স্কেলের ক্ষুদ্রতম ভাগের ভগ্নাথনের নির্ভূব পরিমাপের জন্য মূল স্কেলের গায়ে চােয়ালযুক্ত একটি ছােট ক্রেল পরানাে থাকে। এর নামই ভার্নিয়ার স্কেল। (চিত্র: ১.২)।

এই চোয়ালযুক্ত ভার্নিয়ার প্রধান ক্রেলের উপর সামনে বা পেছনে সরানো যার। এই ক্রেলের সাথে একটি স্ক্র্ থাকে। এই স্ক্রের সাহায্যে ভার্নিয়ার ক্রেলেক প্রধান ক্রেলের গায়ে যেকোনো জায়গায় আটকিয়ে রাখা যায়। প্রধান ক্রেলের চোয়াল এবং ভার্নিয়ার ক্রেলের চোয়াল যখন লেগে থাকে তখন সাধারণত ভার্নিয়ার ক্রেলের শূন্য দাগ প্রধান ক্রেলের শূন্য দাগের সাথে মিলে যায়। ভার্নিয়ার ক্রেল ব্যবহার করে মিলিমিটারের ভগ্নাংশ সঠিকভাবে নির্ণয় করা যায়।

উপরে ভার্নিয়ার স্কেল পরিচ্ছদে বর্ণিত উপায়ে ক্লাইড ক্যালিপার্সের ভার্নিয়ার ধ্রুবক নির্ণয় করা হয় ।

ক্লাইড ক্যালিপার্সের সাহায্যে পরিমাপ : মনে করা যাক, কোনো একটি দন্ডের দৈর্ঘ্য বের করতে হবে। দণ্ডটিকে ক্লাইড ক্যালিপার্সের চোয়াল দূইটির মাঝখানে স্থাপন করতে হয়। ভার্নিয়ার স্কেলের সাথে লাগানো চোয়াল ঠেলে সামনে আনতে হয় যাতে প্রধান স্কেলের চোয়াল ও ভার্নিয়ারের চোয়াল ক্সভূটিকে বিপরীত দিক থেকে স্পর্শ করে। দণ্ডটির বাম প্রান্ত প্রধান স্কেলের শূন্য (0) দাগের সাথে মিলিয়ে ভার্নিয়ারটি সামনে বা পেছনে সরিয়ে দন্ডের ডান প্রান্তের সাথে মিলানো হয়। মনে করা যাক, দন্ডের ডান প্রান্ত স্কেলের M মিমি দাগ অভিক্রম করেছে। তাহলে এর দৈর্ঘ্য M ও (M+1) মিমি এর মাঝামাঝি। এই M মিমি —এর চেয়ে বাড়ভি দৈর্ঘ্য ভার্নিয়ার ব্যবহার করে বের করতে হবে। এর দৈর্ঘ্য টুক্ হবে ভার্নিয়ার পাঠ।

এবার দেখতে হবে ভার্নিয়ারের কোন দাগটি প্রধান ক্রেলের কোনো একটি দাগের সাথে মিলেছে। যদি কোনো দাগ না মিলে থাকে, ভাহলে দেখতে হবে ভার্নিয়ারের কোন দাগটি প্রধান ক্রেলের কোনো একটি দাগের সাথে সবচেয়ে কাছাকাছি হয়েছে। ভার্নিয়ার ক্রেলের এই দাগই হবে ভার্নিয়ারের সমপাতন।

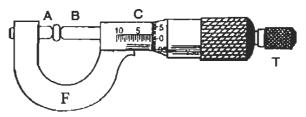
মনে করা যাক, ভার্নিয়ারের V নম্বর দাগটি প্রধান ক্রেলের একটি দাগের সাথে মিলেছে বা কাছাকাছি হয়েছে। সূতরাং যদেরের ভার্নিয়ার ধ্রক VC হলে

দন্ডের দৈর্ঘ্য = প্রধান কেবল পাঠ + ভার্নিয়ার কেবল পাঠ

= প্রধান স্কেল পাঠ + ডার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রবক

অর্থাৎ, $L = M + V \times VC$

উদাহরণ : ধরা যাক, দভের B প্রান্ত প্রধান স্কেলের 12 mm দাপ অতিক্রম করেছে এবং ভার্নিয়ারের 7 নম্বর দাগটি প্রধান স্কেলের একটি দাগের সাথে মিলেছে। তাহলে দভের দৈর্ঘ্য হবে


 $L = 12 \text{ mm} + 7 \times 0.1 \text{ mm}$ (ভার্নিয়ার ধ্বক হলো 0.1 mm)

 $= 12.7 \, \text{mm} = 1.27 \, \text{cm}$

প্রধান স্কেলের চোয়াল এবং ডার্নিয়ার স্কেলের চোয়াল যখন লেগে থাকে তখন সাধারণত ডার্নিয়ার স্কেলের শূন্য দাগ প্রধান স্কেলের শূন্য দাগের সাথে মিলে যায়। অনেক যলেত্র নাও মিলতে পারে। তখন বুঝতে হবে যালিত্রক ত্র্টি রয়েছে এবং এর ছন্য পাঠ সংশোধন করে নিতে হয়।

স্ক্রু গেজ

এই যশ্তের সাহায্যে তারের ব্যাসার্ধ, সরু চোঙের ব্যাসার্ধ ও ছোট দৈর্ঘ্য পরিমাপ করা যায়। এতে রয়েছে দুই প্রাশ্তে দুইটি সমাশ্তরাল বাহুবিশিষ্ট U আকৃতির ফ্রেম কাঠামো F (চিত্র : ১.৩)।

छिख : ३.७

এর এক বাহুরে সমতল পিঠ A এর সাথে একটি সমতল প্রাশ্তবিশিষ্ট দণ্ড বা কীলক স্থায়ীভাবে আটকানো রয়েছে এবং অপর বাহুতে রয়েছে একটি ফাঁপা নল C। এই নলে রয়েছে মিলিমিটারে দাগান্তিকত একটি সরল স্কেল এবং একটি বেলনাকৃতির টুপি T পরিহিত একটি স্কু। স্কুটি ফাঁপা নল C এর ভিতর চলাফেরা করতে পারে। বেলনাকৃতি টুপি T এর কিনারাকে সাধারণত 50 বা 100 ভাগ করা হয়। স্কুর মাথা B যখন স্থায়ী কীলক বা সমতল প্রাশ্তবিশিষ্ট দণ্ড A স্পর্শ করে তখন বৃদ্ভাকার স্কেলের শূন্য দাগে রৈখিক স্কেলের শূন্য দাগের সাথে মিলে যায়। এরকম অবস্থায় দুইটি স্কেলের শূন্য দাগ যদি মিলে না যায় তাহলে বৃথতে হবে যাশিত্রক ত্রুটি রয়েছে।

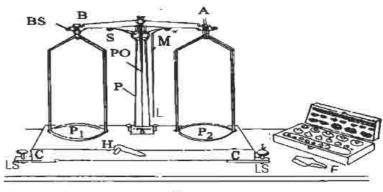
টুপি T একবার ঘুরালে এর যতটুকু সরণ ঘটে এবং রৈখিক স্কেল বরাবর যে দৈর্ঘ্য এটি অতিক্রম করে তাকে বলা হয় স্কুর পিচ (Pitch)। বৃদ্ধাকার স্কেলের মাত্র এক ভাগ ঘুরালে — এর প্রান্ত বা স্কুটি যতটুকু সরে আসে তাকে বলা হয় যানেত্রর লঘিষ্ঠ গণন (Least Count)। একে LC দিয়ে প্রকাশ করা হয়। যানেত্রর পিচকে বৃদ্ধাকার স্কেলের সংখ্যা ঘারা ভাগ করলে লঘিষ্ঠ গণন পাওয়া যায়। সুতরাং,

বৃত্তাকার স্কেলে সাধারণত 100 ভাগ থাকে এবং এই যম্বে পিচ থাকে 1 mm।

ব্দু গেজের সাহাব্যে পরিমাণ : যে তারের ব্যাস মাপতে হবে বা যে পাতের পুরুত্ব বের করতে হবে তাকে $A \otimes B$ এর মাঝে স্থাপন করতে হবে। তার বা পাতটি এমনভাবে স্থাপন করতে হবে যাতে এর এক পাশ A কে এক অপর পাশ B কে স্পর্ণ করে। এবার কুন্তাকার ও রৈথিক কেলের পাঠ নিতে হবে। মনে করা যাক, রৈথিক কেলের পাঠ L \min একং কুন্তাকার কেলের ভাগ সংখ্যা C। সূতরাং, তারের ব্যাস বা পাতের পুরুত্ব হবে :

ব্যাস বা পুরুত্ব = রৈখিক স্কেল পাঠ + বৃদ্ভাকার স্কেলের ভাগ সংখ্যা × লখিষ্ঠ গণন

चर्षां $D = L + C \times LC$


উদহারণ: মনে করা যাক, রৈথিক তেকল পাঠ 3 mm এবং বৃত্তাকার তেকলের ভাগ সংখ্যা 20, তথন ভারের ব্যাস

— 3 mm + 20 × 0.01 mm = 3 mm + 0.2 mm = 3.2 mm ।

স্কুর মাধা যখন সমতল প্রান্তবিশিক্ট দণ্ড A স্পর্শ করে তখন বৃত্তাকার স্কেশের শূন্য দাগ যদি রৈখিক স্কেশের শূন্য দাগের সাথে মিশে না যায় তাহণে ব্রুতে হবে যাশিত্রক তুটি রয়েছে। এর জন্য পাঠ সংশোধন করে নিতে হয়।

জুলা যদ্ভ

কোনো কোনো সময় পদার্থবিজ্ঞান বা রসায়নে খুব অন্ধ পরিমাণ জিনিসের তর সূক্ষতাবে নির্ণয় করতে হয়, যা সাধারণ নিস্তি দিয়ে করা যার না। বস্তু বা পদার্থের পরিমাণ যত কম হবে তার তর পরিমাপের নিস্তি হতে হবে তত সৃক্ষ। এরকম একটি সৃক্ষ নিস্তি হলো তুলা যশত্র বা ব্যালাল। এই যশত্র পদার্থবিজ্ঞান ও রসায়ন ল্যাবরেটরিতে কোনো অন্ধ জিনিসের তর সৃক্ষ পরিমাপের জন্য ব্যবহৃত হয়। কারণ ল্যাবরেটরি বা পরীক্ষাণারে কোনো জিনিসের তর পরিমাপ সঠিক না হলে পরীক্ষণ থেকে তুল কলাফল আসতে পারে এবং পরীক্ষণটির উদ্দেশ্য তত্ত্ব হয়ে যেতে পারে।

8. ८ : कवी

তুলা যন্দেত্র সাধারণ নিস্তির মতো দুইটি সমান ওজনের পাল্লা P_1 ও P_2 নিস্তির দুইপ্রান্দেত থাকে (চিত্র : ১.৪)। এই পাল্লা দুইটি একটি ধাতব দন্ড AB এর দুই প্রান্দেত দুইটি খাঁজের মধ্যে উল্টানো ছুরির ফালের উপর দুইটি সমান ওজনের ফ্রেমের সাহায্যে ঝুলানো থাকে। AB দণ্ডের কেন্দ্রে একটি ছুরি (knife) আটকিয়ে দেওয়া হয়। এটি নিচের দিকে মুখ করে থাকে।

AB দণ্ডটিকে একটি উলম্ব ফাঁপা থাম P-এর উপর রাখা হয়। এই থামটি একটি কাঠের পাটাতন (CC) -এর মাঝখানে দৃঢ়ভাবে আটকানো থাকে। এই পাটাতনের সাথে তিনটি লেভেলিং স্কু (LS) থাকে। (তৃতীয়টি চিত্রে দেখানো হয়নি)। এসব স্কুর সাহায্যে যল্বটিকে লেভেলিং করা হয়। ফাঁপা থামটির মধ্যে একটি নিরেট ধাতব দণ্ড পাটাতন সংলগ্ন হাতল H ঘুরিয়ে উঠানো নামানো যায়।

দণ্ড AB—এর ঠিক মধ্যস্থলে একটি ত্রিকোণাকৃতি অ্যাগেট পাথরের মোটা দিকটা আটকিয়ে সরু ধারটা থামটির নিরেট দণ্ডের উপর অবস্থিত একটি অ্যাগেট প্রেটের উপর বসানো থাকে। নিরেট দণ্ডকে উপরে তুললে দণ্ড AB অ্যাগেট পাথরের সরু দিকটাকে ফালক্রাম করে দুলতে পারে।

তুলাদণ্ডের মধ্যস্থলে একটি লম্বা সূচকের (PO) চণ্ডড়া দিকটা আটকিয়ে এর নিচের সরু প্রান্তকে একটি স্কেলের উপর মুক্ত রাখা হয়। তুলাদণ্ড আনুভূমিক থাকলে সূচকের সরু প্রান্ত স্কেলের 0 দাগের উপর থাকে। ওলন দড়ি (ML) ও পাটাতনের নিচের স্কুর সাহায্যে দণ্ডটিকে আনুভূমিক করা হয়। সমগ্র যন্ত্রটিকে একটি কাচের বঙ্গে রাখা হয়।

তুলা যশ্বের সাহায্যে পরিমাপ : তুলা যশ্বেটি ব্যবহারের সময় হাতল H ঘুরিয়ে থামটিকে উপরে উঠাতে হবে, এতে AB দণ্ডটিও উপরে উঠবে এবং ছুরির কিনারার উপর মুক্তভাবে দুলতে থাকবে। দণ্ডের সাথে পাল্লা দুইটিও উপরে নিচে দুলতে থাকবে। হাতল H উন্টা দিকে ঘুরালে থাম নিচে নেমে যাবে এবং দণ্ড AB ও পাল্লার দোলন কশ্ব হয়ে যাবে।

AB দণ্ড দুলতে থাকলে সূচক কাঁটাটি নিচের স্কেলের উপর ডানে বামে দুলতে থাকবে। পাল্লায় কোনো জিনিস না থাকলে সূচকটির দোলন স্কেলের শূন্য দাগের দুইপাশে সমান হবে। এই দোলন শূন্য দাগের দুইপাশে সমান না হলে AB দণ্ডের দুই পাশের সমন্বয় স্কু (BS) দ্বারা এমনভাবে সমন্বয় করে নিতে হবে যাতে সূচকের দোলন স্কেলের শূন্য দাগের দুইপাশে সমান হয়। থামP উলম্ব হলো কি না ওলন রেখা ML দ্বারা দেখে নিতে হয়।

কোনো বস্তু বা জিনিসের ভর মাপতে হলে বস্তুটিকে বামদিকের পাল্লায় রাখতে হয় এবং ডান দিকের পাল্লায় একটা একটা করে জানা বাটখারা ধীরে ধীরে রাখতে হয় যতক্ষণ না সূচকটি স্কেলের শূন্য দাগের দুই পাশে সমানভাবে দুলতে থাকে। এভাবে জানা বাটখারার সাহায্যে বস্তুর ভর নির্ণয় করা যায়।

থামা ঘড়ি

ক্ষুদ্র সময় ব্যবধান পরিমাপের জন্য থামা ঘড়ি (Stop watch) ব্যবহার করা হয়। এখন থামা ঘড়ি দুই ধরনের হয়ে থাকে; ডিজিটাল থামা ঘড়ি এবং এনালগ থামা ঘড়ি। এনালগ থামা ঘড়ির চেয়ে ডিজিটাল থামা ঘড়ি অনেক নির্ভুল পাঠ দেয়। একটি এনালগ থামা ঘড়ি যেখানে $\pm 0.1_{\rm S}$ পর্যন্ত নির্ভুলভাবে পাঠ দিতে পারে সেখানে একটি ডিজিটাল থামা ঘড়ি $\pm 0.01_{\rm S}$ পর্যন্ত সঠিকভাবে পাঠ দিতে পারে। আজকাল ডিজিটাল ঘড়ি এবং মোবাইলেও থামা ঘড়ি থাকে।

কোনো সময় পরিমাপ করতে হলে ঘড়িটি হাত দিয়ে চালু করতে হয় এবং কশ্বও করতে হয়। এতে সময় ব্যবধানের পাঠে একটি বুটি চলে আসে, যা কমপক্ষে এক সেকেন্ডের একটি বড়সড় ভগ্নাংশ। যদিও এটি ব্যক্তি থেকে ব্যক্তিতে ১৮

পরিবর্তিত হয়। বয়স্ক লোকদের তুলনায় তর্ণদের এই ত্রুটির পরিমাণ কম হয়। অধিকাংশ লোকের ক্ষেত্রে এই ত্রুটির পরিমাণ হয় প্রায় $0.3~\mathrm{s}$ ।

১.৮ পরিমাপে ত্র্টি ও নির্ভুলতা

Error and accuracy in measurement

সব পরিমাপের নির্ভুলতারই একটি সীমা আছে। ব্যবহৃত যন্ত্রপাতি এবং পরীক্ষকের দক্ষতার উপর পরিমাপের নির্ভুলতা নির্ভর করে। ধরা যাক, একটি মিটার স্কেল সেন্টিমিটার ও সেন্টিমিটারের দশমাংশে (মিলিমিটারে) দাগ কাটা আছে। এই মিটার স্কেল দ্বারা যদি আমরা এই বইটির দৈর্ঘ্য মাপতে যাই তাহলে ফলাফল হয়তো $0.1~{
m cm}$ (স্কেলের ক্ষুদ্রতম একভাগ) সঠিক বা নির্ভুল হতে পারে। যদি কোনো ঘরের দৈর্ঘ্য মাপা হয় তাহলে নির্ভুলতা হয়তো আরো কমে যাবে। কারণ স্কেলটি কয়েকবার পরপর রেখে দৈর্ঘ্য মাপতে হবে। প্রত্যেকবার স্কেলের সম্মুখ প্রান্তের অবস্থান মেঝেতে চিটিত করতে হবে। এর ফলে পরিমাপের ভুলের উৎস আরও বেড়ে যাবে। অর্থাৎ ভুল হওয়ার সম্ভাবনা বৃন্ধি পাবে।

পরিমাপের নির্ভুলতা পরিমাপের মতোই গুরুত্বপূর্ণ। সুতরাং সব পরীক্ষকেরই উচিত তার পরীক্ষার ফলাফলের সজ্ঞাফলের নির্ভুলতার পরিমাণ উল্লেখ করা। এই বই -এর দৈর্ঘ্য হয়তো $26.0~{\rm cm}~\pm0.1~{\rm cm}~$ লেখা যেতে পারে। সংকেত \pm এর অর্থ হলো যে, বই এর প্রকৃত দৈর্ঘ্য $25.9~{\rm cm}~$ ও $26.1~{\rm cm}~$ -এর মধ্যে রয়েছে। $0.1~{\rm cm}~$ হলো পরিমাপের অনিক্ষয়তা বা ব্রুটি।

পরিমাপের বেলায় সাধারণত তিন ধরনের ত্রুটি থাকতে পারে। এগুলো হলো:

- (ক) দৈব ত্রুটি
- (খ) যালিত্রক ত্রটি
- (গ) ব্যক্তিগত ত্রুটি
- (क) দৈব জুটি : কোনো একটি ধ্রুব রাশি কয়েকবার পরিমাপ করলে যে জুটির কারণে পরিমাপকৃত মানে অসামঞ্জস্য দেখা যায় তাকে দৈব জুটি বলে। 'দৈব' নাম থেকেই বুঝা যায় এই জুটি সম্পর্কে আগেই অনুমান করা যায় না এবং এই জুটির প্রত্যাশিত মান হবে শূন্য। কেননা পরিমাপকৃত মানগুলো সঠিক মানের এদিক সেদিক ইতস্ততভাবে থাকবে এবং একই যাল্র দিয়ে একই রাশির মান বারবার পরিমাপ করলে এ জুটিগুলোর গড় মান শূন্য হওয়া উচিত। ঘরের দৈর্ঘ্য মাপার জন্য যতবারই মিটার স্কেলটি ঘরের মেঝেতে ফেলা হয় ততবারই দৈব জুটি পরিমাপের অন্তর্ভূক্ত হয়। প্রত্যেকবার মিটার স্কেল ফেলার পর সম্মুখ প্রান্তের অবস্থান চিহ্নিত করার জন্য মেঝেতে যে দাগ দেওয়া হয়, তা প্রকৃত দাগ থেকে কিছুটা সামনে বা পেছনে দেওয়া হয়। এই দাগের সাথে মিলিয়ে যখন আবার মিটার স্কেলটি ফেলা হয় তখন আরও একটি দৈব জুটি পরিমাপে এসে যায়। এ দাগের সাথে মিলানার সময়ও স্কেলটির পেছনের প্রান্ত কথনো দাগের কিছুটা সম্মুখে বা পেছনে মিলানো হয়। দৈব জুটির ফলে চূড়ান্ত ফলাফল হয়তো অত্যন্ত বেশি বা খুব কম হয়ে যেতে পারে। দৈব জুটিকে এড়ানো সম্ভব নয়। কিন্তু, সতর্কতা অবলন্দন করলে এই জুটি কমিয়ে আনা যায়। দৈব জুটিকে কমিয়ে আনতে হলে পরিমাপটি বারবার নিয়ে এদের গড় নিতে হয়।
- (খ) যাশিত্রক ত্র্টি: পদার্থবিজ্ঞানে পরীক্ষণের জন্য তথা মাপ—জোখের জন্য আমাদের যন্তের প্রয়োজন হয়। সেই যন্তের যদি ত্র্টি থাকে তাকে যাশিত্রক ত্র্টি বলে। যেমন শ্লুইড ক্যালিপার্সে পরীক্ষণ শুরুর আগে যদি প্রধান স্কেলের শূন্য দাগ আর ভার্নিয়ার স্কেলের শূন্য দাগ মিলে না যায় তাহলে প্রাশ্ত পরিমাপ সঠিক হবে না। এটা যাশিত্রক ত্র্টি। তেমনিভাবে অ্যামিটার বা ভোন্টমিটারের কাঁটা যদি যন্তের স্কেলের শূন্যের সাথে মিলে না থাকে তাহলে সেই যন্ত্রেও

বৃটি আছে। পরীক্ষণ শুরুর আগে এই যাশিত্রক বৃটি নির্ণয় করে নিতে হয়। তারপর প্রাশত পাঠ থেকে এই পাঠ বিয়োগ করে প্রকৃত পাঠ বের করতে হয়।

(গ) ব্যক্তিগত ত্রুটি : পরীক্ষণের সময় আমাদের নানাবিধ পাঠ নিতে হয়। পর্যবেক্ষকের নিজের কারণে পাঠে যে ত্রুটি আসে তাকে ব্যক্তিগত ত্রুটি বলে। যদি পর্যবেক্ষকের দৃষ্টির সমস্যা থাকে তাহলে পাঠে ভূল হবে। পর্যবেক্ষকের অবস্থান, কোনো দাগ দেখা বা কিছু গণনার ক্ষেত্রে যে ত্রুটি হয় সেগুলোও ব্যক্তিগত ত্রুটি। যেমন স্কেলের সাহায্যে কোনো দণ্ডের দৈর্ঘ্য মাপার সময় দণ্ডের মাথা স্কেলের কোন দাগের সাথে মিলেছে তা লম্বভাবে না দেখে যদি তির্যকভাবে দেখা হয় তাহলে পাঠে ত্রুটি হবে। একটি স্কুগেজের বৃত্তাকার স্কেলের কততম ভাগ রৈখিক স্কেলের সাথে মিলেছে সেটা গুনতে যদি ভূল হয় তাহলে পাঠে ভূল আসবে। কিংবা দোলকের দোলনকাল নির্ণয়ের সময় দোলন সংখ্যা নির্ণয়ে ভূল করলে সঠিক দোলন কাল পাওয়া যাবে না। এসবই ব্যক্তিগত ত্রুটি। এই সকল ত্রুটি দূর করার সময় সাবধানে যথাযথভাবে পাঠ নিতে হয়।

অনুসন্ধান ১.১

একটি আয়তাকার বস্তুর একটি পৃষ্ঠের ক্ষেত্রফল ও বস্তুর আয়তন নির্ণয়।

উদ্দেশ্য : ফ্লাইড ক্যালিপার্স ব্যবহার করে বস্তুর দৈর্ঘ্য নির্ণয়।

সূত্র : ক্ষেত্রফল হলো কোনো বস্তুর পৃষ্ঠের পরিমাণ। আর কোনো বস্তু যে স্থান দখল করে তাকে সেই বস্তুর আয়তন বলে। কোনো আয়তাকার বস্তুর কোনো পৃষ্ঠের ক্ষেত্রফল A এবং আয়তন V হলে,

$$A = L \times B \tag{1.1}$$

এবং
$$V = L \times B \times H$$
 (1.2)

এখানে, L = ক্যুর দৈর্ঘ্য

B = বস্তুর প্রস্থ

H = কস্তুর উচ্চতা

ফ্লাইড ক্যালিপার্সের সাহায্যে যেকোনো দৈর্ঘ্যের পাঠ নির্ণয়ের সূত্র:

দৈর্ঘ্য = প্রধান স্কেল পাঠ (M) + ভার্নিয়ার সমপাতন (V) × ভার্নিয়ার ধ্রবক (VC)

অর্থাৎ L বা B বা $H = M + V \times VC$

যশ্রপাতি : ফ্লাইড ক্যালিপার্স, আয়তকার বস্তু।

কাচ্ছের ধারা

১. স্লাইড ব্যালিপার্সটি নিয়ে এর প্রধান স্কেলের ক্ষ্দ্রতম এক ভাগের মান এবং ভার্নিয়ার স্কেলের মোট ভাগ সংখ্যা কত তা লক্ষ কর। এরপর যশত্রটির ভার্নিয়ার ধ্রবক (VC) বের কর।

- ২. এখন আয়তাকার বস্তুটিকে দৈর্ঘ্য বরাবর ফ্লাইড ক্যালিপার্সের দুই চোয়ালের মধ্যে স্থাপন করে চোয়াল দুইটিকে বস্তুর দুই প্রান্তের সাথে স্পর্শ করাও। এই অবস্থায় ভার্নিয়ারের শূন্য দাগ প্রধান স্কেলের যে দাগ অতিক্রম করে, সেই দাগের পাঠই হলো প্রধান স্কেল পাঠ M।
- ৩. এই অবস্থায় ভার্নিয়ারের কত সংখ্যক দাগ প্রধান স্কেলের যেকোনো একটি দাগের সাথে মিলে যায় তা নির্ণয় কর। এটি ভার্নিয়ার সমপাতন V।
- 8. বস্তুটিকে দৈর্ঘ্য বরাবর কয়েকটি অবস্থানে বসিয়ে ২ ও ৩ নং প্রক্রিয়ার পুনরাবৃত্তি কর এবং প্রাশ্ত মানগুলো ছকে স্থাপন কর।
- ৫. এরপর বস্তুটি প্রস্থ বরাবর ফ্লাইড ক্যালিপার্সের চোয়ালের মধ্যে স্থাপন করে ২ ও ৩ নং প্রক্রিয়ায় কয়েক জায়গায় পাঠ নাও এবং ছকে স্থাপন কর।
- ৬. এবার বস্তুটি উচ্চতা বরাবর ফ্লাইড ক্যালিপার্সের চোয়ালের মধ্যে স্থাপন করে ২ ও ৩ নং প্রক্রিয়ায় কয়েক জায়গায় পাঠ নাও এবং ছকে স্থাপন কর।
- ৭. প্রয়োজনীয় হিসাবের সাহায্যে বস্তুটির দৈর্ঘ্য, প্রস্থ ও উচ্চতা নির্ণয় করে (1.1) এবং (1. 2) সমীকরণে তা বসিয়ে আয়তকার বস্তুটির একটি পৃষ্ঠের ক্ষেত্রফল ও বস্তুটির আয়তন নির্ণয় কর।

অনুসন্ধানের ছক

পর্যবেক্ষণ

ক. ভার্নিয়ার ধ্রুক নির্ণয়:

প্রধান স্কেলের ক্ষুদ্রতম এক ঘরের মান , s=.... cm ভার্নিয়ার স্কেলের মোট ভাগ সংখ্যা , n=....

∴ ভার্নিয়ার ধ্রক,
$$VC = \frac{S}{n} = \dots$$
 cm

খ. আয়তকার বস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা নির্ণয়ের ছক

আয়তকার বস্তুর	পর্যবেক্ষণ সংখ্যা	প্রধান স্কেন্স পাঠ , <i>M</i> (cm)	ভার্নিয়ার সমপাতন <i>V</i>	ভার্নিয়ার ধ্রুবক <i>VC</i> (cm)	পাঠ M + V×VC (cm)	গড় পাঠ (cm)
দৈৰ্ঘ্য	1.					
L	2.					
	3.					
প্রস্থ	1.					
$\boldsymbol{\mathit{B}}$	2.					
	3.					
উচ্চতা	1.					
H	2.					
	3.					

হিসাব ও ফলাফল:

আয়তকার বস্তুর এক পৃষ্ঠেল ক্ষেত্রফল, $A=L\times B=$ ${
m cm}^2=$ $imes 10^{-4}~{
m m}^2$ এবং আয়তন, $V=L\times B\times H=$ ${
m cm}^3=$ $imes 10^{-6}~{
m m}^3$

অনুসন্ধান ১.২

একটি বৃত্তাকার প্রস্পচ্ছেদবিশিষ্ট তারের প্রস্পচ্ছেদের ক্ষেত্রফল নির্ণয়।

উদ্দেশ্য : স্ক্রুগেজ ব্যবহার করে তারের ব্যাস নির্ণয়।

সূত্র : ক্ষেত্রফল হলো কোনো বস্তুর পৃষ্ঠের পরিমাণ। কোনো তারের প্রস্থ বরাবর দৈর্ঘ্যের সাথে লম্বভাবে ছেদ কাটলে যে তল পাওয়া যায় তার পরিমাণই হচ্ছে প্রস্থচ্ছেদের ক্ষেত্রফল। কোনো বৃত্তাকার প্রস্থচ্ছেদবিশিষ্ট তারের প্রস্থচ্ছেদের ক্ষেত্রফল Λ হলে

$$A = \pi r^2$$

এখানে, r = তারের ব্যাসার্ধ

π= 3.14 ; ধ্ব সংখ্যা

এখন তারের ব্যাস d হলে r = d/2, সুতরাং

$$A = \pi \left(\frac{d}{2}\right)^{2}$$

$$\therefore A = \frac{1}{4}\pi d^{2}$$
(1.3)

স্কু গেন্ডের সাহায্যে যেকোনো দৈর্ঘ্যের পাঠ নির্ণয়ের সূত্র:

দৈর্ঘ্য = রৈখিক স্কেল পাঠ (L) + বৃত্তাকার স্কেলের ভাগ সংখ্যা (C) × লঘিষ্ঠ গণন (LC)

অর্থাৎ $d = L + C \times LC$

যশ্রপাতি : স্কু গেজ, তার।

কাচ্ছের ধারা

- ১. প্রথমে রৈখিক স্কেলের ক্ষুদ্রতম ঘরের মান ও বৃত্তাকার স্কেলের মোট ভাগ সংখ্যা দেখে নাও।
- ২. এরপর যন্তের পিচ নির্ণয় কর। বৃত্তাকার স্কেল সম্পূর্ণ একবার ঘুরালে এটি রৈখিক স্কেল বরাবর যে দৈর্ঘ্য অতিক্রম করে তাই হলো যন্তের পিচ। পিচকে বৃত্তাকার স্কেলের মোট ভাগ সংখ্যা দিয়ে ভাগ করে লঘিষ্ঠ গণন (LC) বের কর।
- ৩. এখন পরীক্ষাধীন তারটিকে স্ক্রু গেচ্জের স্থায়ী দণ্ড ও স্ক্রুর মাঝখানে রেখে স্ক্রুটিকে একদিক বরাবর ঘুরিয়ে কীলক ও স্ক্রুকে আলতোভাবে তারের গায়ে স্পর্শ করাও।

- 8. এই অবস্থায় রৈখিক স্কেলের যে দাগটি বৃত্তাকার স্কেলের বামদিকে দেখা যায় সেই দাগের পাঠ নাও।এটি রৈখিক স্কেল পাঠ (L)। এবার দেখো বৃত্তাকার স্কেলের কত নম্বর দাগ রৈখিক স্কেলের দাগের সাথে মিলে গেছে। এটি হলো বৃত্তাকার স্কেলের ভাগ সংখ্যা (C)।
- ৫. এভাবে তারের অন্তত পাঁচটি ভিন্ন জায়গায় পাঠ নিয়ে ছকে স্থাপন কর।
- ৬. প্রয়োজনীয় হিসাবের সাহায্যে তারের ব্যাস বের করে (1.3) সমীকরণে বসিয়ে তারের প্রস্থচ্ছেদের ক্ষেত্রফল নির্ণয় কর।

অনুসন্ধানের ছক

পর্যবেক্ষণ

क. निष्ठं गंपन निर्पय :

রৈখিক স্কেলের এক ভাগের মান , s=.... mm বৃদ্তাকার স্কেলের মোট ভাগ সংখ্যা , n=....

পিচ (বৃত্তাকার স্কেল সম্পূর্ণ একবার ঘুরালে রৈখিক স্কেলে যে দৈর্ঘ্য অতিক্রম করে),

$$p = \, mm$$

$$\therefore$$
 লঘিষ্ঠ গণন, $LC = \frac{p}{n} = \dots$ mm

খ. তারের ব্যাস নির্ণয়ের ছক

পর্যবেক্ষণ সংখ্যা	রৈখিক স্কেল পাঠ , L (mm)	বৃত্তাকার স্কেশের ভাগ সংখ্যা C	লঘিষ্ঠ গণন <i>LC</i> (mm)	ব্যাস d= L + C×LC (mm)	গড় ব্যাস (mm)
1.					
2.					
3.					
4.					
5.					

হিসাব ও ফলাফল:

তারের প্রস্পাচ্ছেদের ক্ষেত্রফল, $A=rac{1}{4}\pi d^2=....$ $\mathrm{mm}^2=....$ $\times~10^{-6}~\mathrm{m}^2$

অনুশীলনী

ক. বহুনির্বাচনি প্রশ্ন

সঠিক উন্তরটির পাশে টিক $(\sqrt{})$ চিহ্ন দাও

১। কোয়ান্টাম তত্ত্ব কে প্রদান করেন?

(ক) প্ল্যাঙ্ক

(খ) আইনস্টাইন

(গ) রাদারফোর্ড

(ঘ) হাইজেনবার্গ

২। বোসন কার নাম থেকে এসেছে?

(ক) জগদীশ চন্দ্র বসু

(খ) সুভাষ চন্দ্ৰ বসু

(গ) সত্যেন্দ্র নাথ বসু

(ঘ) শরৎ চন্দ্র বসু

৩। নিচের কোনটি মৌলিক রাশি নয়?

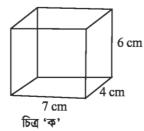
(ক) ভর

(খ) তাপ

(গ) তড়িৎ প্রবাহ

(ঘ) পদার্থের পরিমাণ

8। একটি দণ্ডকে ফ্লাইড ক্যালিপার্সে স্থাপনের পর যে পাঠ পাওয়া গেল তা হচ্ছে প্রধান স্কেল পাঠ 4 cm, ভার্নিয়ার সমপাতন 7 এবং ভার্নিয়ার ধ্রুবক $0.1~\mathrm{mm}$ । দণ্ডটির দৈর্ঘ্য কত ?


(**क**) 4.07 cm

(খ) 4.7 cm

(গ) 4.07 mm

(**ଏ**) 4.7 mm

নিচের চিত্র থেকে ৫ এবং ৬ নম্বর প্রশ্নের উত্তর দাও:

r = 3cm

চিত্ৰ 'খ'

৫। খ চিত্রটির আয়তন

 $(\overline{\Phi}) \frac{1}{3}\pi r^3$

(খ) $\frac{4}{3}\pi r^3$

 $(9) \quad \frac{3}{4}\pi r^3$

(ঘ) πI

৬। ক ও খ চিত্রের আয়তনের অনুপাত :

(季) 1:0.673

(খ) 1:0.0673

(গ) 1: 0.763

(ঘ) 1:0.637

খ. সৃজনশীল প্রশ্ন

১. রাশেদ তার সদ্য কেনা স্কেল দিয়ে পেন্সিলের দৈর্ঘ্য মেপে বলল পেন্সিলটির দৈর্ঘ্য 11.73cm । তার কশ্ব সূজন বলল এই পরিমাপ সঠিক নাও হতে পারে। রাশেদ বলল যে এই স্কেল দিয়ে কয়েকবার পরিমাপ করে একই ফল পেয়েছে। তারা শিক্ষকের কাছে গেলে শিক্ষক তাদের 0.005 cm ভার্নিয়ার ধ্রুবকবিশিষ্ট ভার্নিয়ার স্কেল ব্যবহার করতে বললেন। রাশেদ ভার্নিয়ার স্কেলের সাহায্যে সঠিক দৈর্ঘ্য পরিমাপ করল।

- ক. ভার্নিয়ার ধ্রুবক কী?
- খ. কোনো রাশির পরিমাণ প্রকাশ করতে এককের প্রয়োজন হয় কেন?
- গ. ব্যবহৃত ভার্নিয়ার স্কেলের কয় ভাগ প্রধান স্কেলের কত ভাগের সমান নির্ণয় কর।
- ঘ. রাশেদের প্রথম দৈর্ঘ্য পরিমাপ সঠিক পরিমাপের সাথে সজ্ঞাতিপূর্ণ ছিল না যুক্তি সহকারে লিখ।

গ. সাধারণ প্রশ্ন

- ১। আমরা কেন পদার্থবিজ্ঞান পড়ব এ সম্পর্কে একটি প্রতিবেদন রচনা কর।
- ২। '' বিংশ শতাব্দীতে পদার্থবিজ্ঞানের বিষয়কর অগ্রগতি ঘটে" উদাহরণসহ এর সপক্ষে যুক্তি দাও।
- ৩। (ক) রাশি বলতে কী বুঝায় ?
 - (খ) মৌলিক রাশি ও লব্ধ রাশির মধ্যে পার্থক্য নির্দেশ কর।
- ৪। (ক) এককের আন্তর্জাতিক পন্ধতিতে কোন কোন রাশিকে মৌলিক রাশি ধরা হয়েছে ?
 - (খ) এই সকল রাশির এককের নাম কর।
- ৫। মাত্রা বলতে কী বুঝ ?

বিতীয় অধ্যায় গৃতি MOTION

জোমরা আমাদের চারপাশে যত কম্তু দেখি, সেগুলো হয় স্থির না হয় গতিশীল। স্থিতি ও গতি কাতে আসলে আমরা কী বৃঝি? একটি গতিশীল কম্তুর গতির বৈশিষ্ট্যসমূহ প্রকাশের জন্য আমাদের গতি সংক্রান্ত বিভিন্ন রাশির প্রয়োজন হয়। এই অধ্যায়ে আমরা গতি সংক্রান্ত বিভিন্ন রাশি, তাদের মাত্রা, একক, তাদের মধ্যকার পারস্পরিক সম্পর্ক ইত্যাদি নিয়ে আলোচনা করব।]

এই অধ্যায় পাঠ পেবে আমরা–

- ১. স্থিতি ও গতি ব্যাখ্যা করতে পারব।
- ২. বিভিন্ন প্রকার গতির মধ্যে পার্ধক্য করতে পারব।
- শেকলার ও ভেক্টর রাশি ব্যাখ্যা করতে পারব।
- গতি সম্পর্কিত রাশিসমূহের মধ্যে পারস্পরিক সম্পর্ক বিশ্লেষণ করতে পারব।
- বাধাহীন ও মৃক্তভাবে পড়ন্ত বস্তুর গতি ব্যাখ্যা করতে পারব।
- ৬. পেখচিত্রের সাহায্যে গতি সম্পর্কিত রাশিসমূহের মধ্যে সম্পর্ক বিশ্লেষণ করতে পারব।
- আমাদের জীবনে গতির প্রভাব উপলব্দি করতে পারব।

২.১ স্থিতি ও গতি

Rest and motion

অবস্থান: তোমার স্কুল কোথায়? এই প্রশ্নের জবাব থেকে আমরা জানতে পারব তোমার স্কুলের অবস্থান। তুমি যদি বল তোমার স্কুল ঝিলটুলিতে তাহলে তোমার কথা পুরোপুরি সত্য, কিন্তু এ থেকে আমরা স্কুলের সঠিক অবস্থান জানতে পারব না। সঠিক অবস্থান জানতে গেলে তোমাকে অবশ্যই বলতে হবে কোথা থেকে কোন দিকে কত দূরে। তাহলেই কেবল অবস্থান ঠিক ঠিক জানা যাবে। আমাদের প্রথমেই একটা জানা কিন্দু বা বস্তু ধরে নিতে হবে যার সাপেক্ষে অন্য কিন্দু বা বস্তুর অবস্থান নির্ণয় করা হয়। যেমন, যদি বলা হয় তোমার বাসার গেট থেকে তোমার স্কুল পূর্ব দিকে ১ কিলোমিটার দূরে, তাহলে এটির অবস্থান নিশ্চিতভাবে বলা যাবে। সূতরাং আমাদের আশেপাশে, আমাদের গ্রামে বা শহরে, আমাদের দেশে বা এই পৃথিবীতে কিংবা এই মহাবিশ্বে কোনো কিছুর অবস্থান নির্দেশ করার জন্য আমাদের একটি কিন্দুকে স্থির ধরে নিতে হয়। এই কিন্দুকে আমরা বলি প্রসঞ্জা কিন্দু বা মূলকিন্দু আর যে দৃঢ় বস্তুর সাথে তুলনা করে আমরা অন্য বস্তুর অবস্থান, স্থিতি, গতি ইত্যাদি নির্ণয় করি তাকে বলি প্রসঞ্জা কাঠামো। আমাদের সুবিধামতো আমরা যেকোনো কিন্দুকে প্রসঞ্জা কিন্দু ধরতে পারি। উপরিউক্ত উদাহরণে আমরা অন্য কিন্দুকে প্রসঞ্জা কিন্দু ধরতে পারি। উপরিউক্ত উদাহরণে আমরা অন্য কিন্দুকে প্রসঞ্জা কিন্দু ধরতে পারিতাম।

স্থিতি ও গতি : আমরা আমাদের চারপাশে অনেক বস্তু দেখি। এদের কতোগুলো স্থির বাকিগুলো গতিশীল। আসলে আমরা স্থির ও গতিশীল বস্তু বলতে কী বুঝি?

নিছে কর : হাত দিয়ে একটা কলম ধরে রাখ ।

কলমের আশেপাশে কী আছে? আশেপাশের বস্তুগুলোর তুলনায় কলমের অবস্থানের কোনো পরিবর্তন হচ্ছে কি? না। তোমার হাতে ধরে থাকা কলমের আশেপাশের প্রত্যেক বস্তু যেমন তোমার চেয়ার, টেবিল, তোমার বই, খাতা, ঘরের দরজা, জানালা সবকিছু থেকে এই কলমের একটি নির্দিষ্ট দূরত্ব ও দিক আছে। অর্থাৎ তোমার কলমের চারপাশের অন্যান্য বস্তুর তুলনায় বা সাপেক্ষে তোমার কলমের অবস্থান নির্দিষ্ট। সময়ের সাথে কলমটির অবস্থানের পরিবর্তন হচ্ছে না। আমরা বলি পারিপার্শ্বিকের সাপেক্ষে কলমটি স্থির। আর কলমটির স্থির থাকার এই ঘটনাটিই হচ্ছে স্থিতি। স্কুরোং, সময়ের পরিবর্তনের সাথে পারিপার্শ্বের সাপেক্ষে যখন কোনো বস্তুর অবস্থানের পরিবর্তন ঘটে না তখন ঐ বস্তুকে স্থিতিশীল বা স্থির বস্তু বলে। আর এই অবস্থান অপরিবর্তিত থাকাকে বলে স্থিতি।

অনি রাস্তার পাশে দাঁড়িয়ে আছে। সে বলে যে, ঘরবাড়ি, গাছপালা বৈদ্যুতিক খুঁটি, ইত্যাদি সব স্থির দাঁড়িয়ে আছে। সে কেন এ কথা বলে? কারণ অনির মতে এই সকল বস্তু সময়ের সাথে অবস্থানের পরিবর্তন করছে না।

নিচ্ছে কর : তোমার হাতে ধরে থাকা কলমটিকে এদিক সেদিক নাড়তে থাক ।

আশেপাশের ক্সতুগুলোর তুলনায় কলমের অবস্থানের কোনো পরিবর্তন হচ্ছে কি? এখন কলমের আশেপাশের প্রত্যেকটি বস্তু থেকে কলমের দূরত্ব এবং দিক ক্রমাগত পরিবর্তন হচ্ছে। সময়ের সাথে কলমটির অবস্থানের পরিবর্তন হচ্ছে। আমরা বিল পারিপার্শ্বিকের সাপেক্ষে কলমটি গতিশীল। সময়ের পরিবর্তনের সাথে পারিপার্শ্বের সাপেক্ষে যখন কোনো ক্যতুর অবস্থানের পরিবর্তন ঘটে তখন তাকে গতিশীল ক্যতু বলে। আর অবস্থানের এ পরিবর্তনের ঘটনাকে বলে গতি।

আমরা আগেই আলোচনা করেছি কোনো বস্তু স্থির না গতিশীল তা বুঝার জন্য প্রসঞ্চা বস্তু তথা প্রসঞ্চা কাঠামো পছন্দ করা জরুরি। এই প্রসঞ্চা বস্তু ও আমাদের আলোচ্য বস্তুর পারস্পরিক অবস্থান যদি সময়ের সাথে অপরিবর্তিত থাকে তাহলে আলোচ্য বস্তুটিকে প্রসঞ্চা বস্তুর সাপেক্ষে স্থির ধরা হয়। আলোচ্য বস্তু ও প্রসঞ্চা বস্তু যদি একই দিকে একই বেগে চলতে থাকে তাহলেও কিন্তু সময়ের সাথে বস্তুদ্বয়ের মধ্যবর্তী দূরত্বের কোনো পরিবর্তন ঘটবে না, যদিও প্রকৃতপক্ষে বস্তুটি গতিশীল। চলন্ত ট্রেনের কামরায় দুই বন্ধু যদি মুখোমুখি বসে থাকে, তবে একজনের সাপেক্ষে অন্যজনের অবস্থানের কোনো পরিবর্তন হয় না। সুতরাং বলা যেতে পারে একজনের সাপেক্ষে অন্যজন স্থির। কিন্তু যদি ট্রেন লাইনের পাশে দাঁড়ানো কোনো ব্যক্তি তাদেরকে দেখেন তবে তিনি দেখবেন তার সাপেক্ষে ঐ দুই কন্ধুর অবস্থানের পরিবর্তন হচ্ছে। অর্থাৎ লাইনের পাশে দাঁড়ানো ব্যক্তির সাপেক্ষে তারা উত্যই গতিশীল।

তাহলে আমরা দেখতে পাচ্ছি যে, কোনো বস্তু প্রকৃতপক্ষে স্থির কি না তা নির্ভর করছে প্রসঞ্চা বস্তুর উপর। প্রসঞ্চা বস্তু যদি প্রকৃতপক্ষে স্থির হয় তাহলে তার সাপেক্ষে যে বস্তু স্থিতিশীল রয়েছে সেও প্রকৃতপক্ষে স্থির। এ ধরনের অবস্থাকে আমরা পরম স্থিতি বলতে পারি। অর্থাৎ প্রসঞ্চা বস্তুটি যদি পরম স্থিতিতে থাকে তাহলেই কোনো বস্তু তার সাপেক্ষে স্থির থাকলে সে বস্তুকে পরম স্থিতিশীল বলা যেতে পারে। সেরূপ পরম স্থিতিশীল প্রসঞ্চা বস্তুর সাপেক্ষে কোনো বস্তুর গতিকে আমরা পরম গতি বলি। কিন্তু এ মহাবিশ্বে এমন কোনো প্রসঞ্চা বস্তু পাওয়া সম্ভব নয় যা প্রকৃতপক্ষে স্থির রয়েছে। কারণ পৃথিবী প্রতিনিয়ত সূর্যের চারদিকে ঘুরছে, সূর্যও তার গ্রহ, উপগ্রহ নিয়ে ছায়াপথে গতিশীল। কাজেই আমরা যখন কোনো বস্তুকে স্থিতিশীল বা গতিশীল বলি, তা আমরা কোনো আপাত স্থিতিশীল বস্তুর সাপেক্ষে বলে থাকি। কাজেই আমরা বলতে পারি এ মহাবিশ্বের সকল স্থিতিই আপেক্ষিক— সকল গতিই আপেক্ষিক। কোনো গতিই পরম নয়, পরম নয় কোনো স্থিতিই।

মিতু কোথাও যাওয়ার জন্য বাস স্ট্যান্ডে বাসের জন্য অপেক্ষা করছে। সে দেখল তার বন্ধু রনি রিকশায় তাকে অতিক্রম করে যাচ্ছে। সে বলে যে রিকশাটি গতিশীল। কারণ মিতুর সাপেক্ষে সময়ের সাথে সাথে রিকশাটি নিরবচ্ছিন্নভাবে তার অবস্থানের পরিবর্তন করছে।

কোনো বস্তুর অবস্থানের পরিবর্তন কিন্তু দুইভাবে হতে পারে।

নিচের উদাহরণগুলো বিবেচনা করা যাক:

- (ক) মৌ একটি গাছের নিচে দাঁড়িয়ে আছে এবং দেখল যে তার বন্ধু ঐশি তার থেকে দৌড়ে দূরে সরে যাচছে। মৌ ও ঐশির মধ্যবর্তী দূরত্ব সময়ের সাথে সাথে বৃদ্ধি পাচছে। (চিত্র : ২.১ক)।
- (খ) রাজুদের স্কুলের বার্ষিক ক্রীড়ায় দৌড় প্রতিযোগিতার জন্য মাঠে একটি বিরাট বৃদ্ভাকার ট্র্যাক করা হয়েছে। সেই বৃদ্ভের মাঝখানে দাঁড়িয়ে রাজু দেখল তার বন্ধু শিহাব ঐ ট্র্যাক বরাবর দৌড়ে প্র্যাকটিস করছে (চিত্র : ২.১খ)। রাজু বলে যে শিহাব গতিশীল, কিন্তু রাজু ও শিহাবের মধ্যবর্তী দূরত্ব সময়ের সাথে সাথে তো পরিবর্তিত হচ্ছে না। তাহলে কীভাবে বলা যাবে যে শিহাব রাজুর সাপেক্ষে গতিশীল?

চিত্ৰ: ২.১ (খ)

গ্রথম উদাহরণে মৌ –এর সাগেকে সময়ের সাথে দ্রাত্বের পরিবর্তনের সাথে সাথে ঐশির অবস্থানের পরিবর্তন হচ্ছে।
বিজীয় উদাহরণে রাজ্য সাপেকে সময়ের সাথে শিহাবের অবস্থানের পরিবর্তন হচ্ছে, যদিও দ্রাত্বের পরিবর্তন হচ্ছে
না। ভাহলে কী পরিবর্তন হচ্ছে? রাজ্য সাপেকে শিহাবের অবস্থানের দিকের পরিবর্তন হচ্ছে। পর্যবেক্তকের সাপেকে
পতিশীল কোনো কাতুর অবস্থানের পরিবর্তন হতে পারে দুরছে বা দিকে বা উভয়েই।

২.২ বিভিন্ন প্রকার গভি

Types of motion

ব্ৰৈষিক পাঠি: কোনো বস্তু যদি একটি সরল প্ৰেণা ব্যাব্য গতিশীন হয় অৰ্থাৎ কোনো বস্তুর গতি যদি একটি সরল প্ৰেণার উপায় সীমাক্ষথ থাকে, ভাহলে ভায় গতিকে হৈষিক গতি বলে। একটি সোজা সভুকে কোনো পাড়ির গতি হৈষিক গতি।

বুর্ণন গভি: যথন কোনো কন্তৃ কোনো নির্দিষ্ট কিন্তু বা ত্রেখা থেকে কন্তৃ কনাপুলোর দূরত্ব অপরিবর্তিত ত্রেখে ঐ কিন্তু বা ত্রেখাকে কেন্দ্র করে যোত্রে তথন সে কন্তুর গভিকে ঘূর্ণন গভি বা বৃত্তাকার গভি কলে। যেমন কৈন্যুভিক পাখার গভি, ঘড়ির কাঁটার গভি ইড্যাদি।

চলন গজি : কোনো কম্পূ যদি এমনতাবে চলতে থাকে যাতে করে কম্পূর সকল কণা একই সময়ে একই দিকে সমান দূরত্ব অভিক্রম করে ভাহলে এ গভিকে চলন গভি বলে।

একখানা বইকে যুৱতে না দিয়ে ঠেলে টেবিলের এক প্রান্ত থেকে খন্য প্রান্তে নিয়ে গেলে এই গতি চলন গতি হবে। ব্যৱগ বই এর প্রতিটি কণা সমান সময়ে একই দিকে সমান দুরত্ব অভিক্রম করবে।

পর্যায়বৃদ্ধ গাঁও : কোনো পণ্ডিশীল কৃত্বকশার গাঁও বলি এমন হয় বে, এটি এর গাঁও পথে কোনো নির্দিষ্ট কিন্দুকে নির্দিষ্ট সময় পর পর একই দিক থেকে অভিক্রম করে, ভাহলে সেই গাঁওকে পর্যায়বৃদ্ধ গাঁও বলে।

এই গতি বৃত্তাকার, উপবৃত্তাকার বা সরলবৈধিক হতে পারে। যড়ির কাঁটার গতি, সূর্বের চারদিকে পৃথিবীর গতি, বাল্প বা পেট্রোল ইঞ্জিনের সিলিভারের মধ্যে পিস্টনের গতি পর্যায়কুত্ত গতি।

পর্যায়বৃত্ত গতিসম্পন্ন কোনো কণা যে নির্দিষ্ট সময় পর পর নির্দিষ্ট বিন্দুকে নির্দিষ্ট দিক দিয়ে অতিক্রম করে সেই সময়কে পর্যায়কাল বলে।

স্পদ্দন গতি : পর্যায়বৃত্ত গতিসম্পন্ন কোনো বস্তু যদি পর্যায়কালের অর্ধেক সময় কোনো নির্দিষ্ট দিকে এবং বাকি অর্ধেক সময় একই পথে তার বিপরীত দিকে চলে তবে এর গতিকে স্পদ্দন বা দোলন বা কম্পন গতি বলে।

স্পন্দন গতির উদাহরণ হচ্ছে সরল দোলকের গতি, কম্পনশীল সুরশলাকার ও গিটারের তারের গতি।

২.৩ স্কেলার রাশি ও ভেক্টর রাশি

Scalar and vector quantities

আগের অধ্যায়ে আমরা জেনেছি ভৌত জগতে যা কিছু পরিমাপ করা যায় তাকে রাশি বলে। কোনো রাশি যখন পরিমাপ করা হয় তখন তার একটি মান থাকে। এই মান প্রকাশ করতে আমরা একটি সংখ্যা এবং একটি একক ব্যবহার করি। যেমন আমরা যদি বলি বেঞ্চটির দৈর্ঘ্য 1.5 মিটার, তাহলে বুঝা যায় দৈর্ঘ্যের একক মিটার আর বেঞ্চের দৈর্ঘ্য তার 1.5 গুণ। কিন্তু কেবল মান দিয়ে সকল রাশিকে সম্পূর্ণরূপে প্রকাশ করা যায় না। কিছু কিছু রাশি প্রকাশের জন্য মানের সাথে দিকেরও প্রয়োজন হয়।

যেমন আমরা যদি বলি একটি গাড়ি ঘণ্টায় 40 কিলোমিটার বেগে চলছে, তাহলে এটা বুঝা যাবে যে গাড়িটি এক ঘণ্টায় 40 km দূরত্ব অতিক্রম করেছে, কিন্তু গাড়িটি কোনোদিকে সে দূরত্ব অতিক্রম করেছে, তা জানা যাবে না। গাড়িটির প্রকৃত অবস্থা বুঝাতে হলে গাড়িটির বেগ কোনো দিকে সেটাও উল্লেখ করতে হবে। সূতরাং দেখা যাচ্ছে কিছু কিছু রাশি আছে যেগুলো সম্পূর্ণরূপে প্রকাশ করতে হলে মানের সাথে দিকের অবশ্যই উল্লেখ করতে হয়। দিকের বিবেচনায় আমরা বস্তু জগতের সকল রাশিকে দুই ভাগে ভাগ করতে পারি; যথা—

- ১। অদিক রাশি বা স্কেলার রাশি
- ২। দিক রাশি বা ভেক্টর রাশি।

স্কেলার রাশি: যে সকল ভৌত রাশিকে শুধু মান দিয়ে সম্পূর্ণরূপে প্রকাশ করা যায়, দিক নির্দেশের প্রয়োজন হয় না তাদেরকে স্কেলার রাশি বলে। দৈর্ঘ্য, ভর, দুতি, কাজ, শক্তি, সময়, তাপমাত্রা ইত্যাদি স্কেলার রাশির উদাহরণ।

ভেক্টর রাশি: যে সকল ভৌত রাশিকে সম্পূর্ণরূপে প্রকাশ করার জন্য মান ও দিক উভয়ের প্রয়োজন হয় তাদেরকে ভেক্টর রাশি বলে। সরণ, বেগ, ত্বরণ, বল, তড়িৎ প্রাবল্য ইত্যাদি ভেক্টর রাশির উদাহরণ।

২.১ সারণি থেকে দেখা যচ্ছে যে প্রতিটি ভেক্টরকে মান ও দিক দিয়ে আর স্কেলার রাশিগুলোকে কেবল মান দিয়ে নির্দেশ করা হয়েছে।

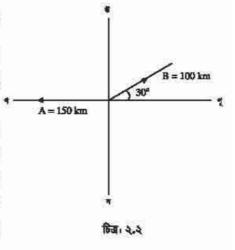
সারণি ২.১ ক্রেলার ও তেইর রাশির উদাহরণ

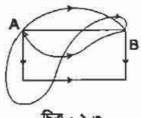
ক্ষেশার রাশি		ভেট্টর রাশি			
নাম	সংক্ৰেত	উদাহরণ	নাম	সংক্রেড	উদাহরণ
দূরত্ব	d	40 m	সরণ	s বা s	40 m भूर्व मिदक
দৃতি	ν	30 m s ⁻¹	বেগ	v বা ⊽	30 m s ⁻¹ উত্তর দিকে
সময়	t	15 8	বল	Fবা →	100 N উপরের দিকে
শক্তি	E	2000 J	ত্বৰণ	a বা a	9.8 m s ⁻² নিচের দিকে

ভেষ্টর রাশির নির্দেশনা

কোনো রাশির সংক্রেতের উপর তীর চিহ্ন দিয়ে ভেটর রাশি নির্দেশ করা হয়, যেমন \overrightarrow{A} । ভেটর রাশি \overrightarrow{A} এর মান

 \overrightarrow{A} বা \overrightarrow{A} দিয়ে নির্দেশ করে। ছাপার অক্ষরের ক্ষেত্রে অনেক সময় \overrightarrow{A} এর বদলে বোল্ড হরফ A শুক্তর এবং সাধারণ হরফ A দিয়ে রাশিটির মান প্রকাশ করা হয়। সারাণি ২.১ এ ভেক্টর রাশিকে বোল্ড হরফ দিয়ে একং তীর চিহ্ন দিয়ে নির্দেশ করা হয়েছে।


চিত্রে কোনো ভেটর রাশিকে একটি তীর চিহ্নিত সরদরেখা ঘারা নির্দেশ করা হয়। সরলরেখার দৈর্ঘ্য রাশিটির মান এবং তীর চিহ্ন এর দিক নির্দেশ করে। উদাহরণস্বরূপ ২.২ চিত্রে সরণ 50 km কে 1 cm হারা নির্দেশ করা হয়েছে। সুভরাং ঐ চিত্রে A ভেটরটি যার দৈর্ঘ্য 3 cm, সেটি পশ্চিম দিকে 150 km সরণ নির্দেশ করে। B ভেট্টরটি পূর্ব দিকের সাথে 30° কোণে উন্তর দিকে 100 km সরণ নির্দেশ করে।


২.৪ গতি সংক্রাম্ভ বিভিন্ন রাশি

Different quantities related to motion

দুরত্ব ও সরণ :

ধরা যাক, অন্তি ভার স্কুলের গেট থেকে 100 মিটার দৌড়ে গেল। অন্তি গেট থেকে 100 মিটার দূরে আছে সত্য, কিম্তু ঠিক কোন জাব্রগায় আছে তা বলা ষাবে না। কেননা অভি গেট থেকে উন্তর, দক্ষিণ, পূর্ব, পশ্চিম বা অন্যকোনো দিকে 100 মিটার

চিত্র : ২.৩

দূরে থাকতে পারে। অভির অবস্থানের পরিবর্তন সঠিকভাবে জানতে হলে অভি কোন দিকে 100 মিটার দূরে গেছে তা জানতে হবে। যদি বলা হয় অভি গেট থেকে 100 মিটার পূর্ব দিকে দৌড়ে গেছে, তাহলে নিশ্চিতভাবে অভির অবস্থান জানা যাবে। গেট থেকে সোজা পূর্ব দিকে 100 মিটার গেলেই অভিকে পাওয়া যাবে। প্রথম ক্ষেত্রে আমরা অভির অবস্থানের পরিবর্তন বুঝবার জন্য যে রাশিটি ব্যবহার করেছি তাহলো দূরত্ব। এটি একটি স্কেলার রাশি। আর দিতীয় ক্ষেত্রে আমরা দূরত্বের সাথে সাথে দিকও উল্লেখ করেছি —সেটি সরণ। এটি একটি ভেক্টর রাশি। একটি নির্দিষ্ট দিকে যে দূরত্ব বা অবস্থানের পরিবর্তন তা হলো সরণ। সূতরাং নির্দিষ্ট দিকে পারিপার্শ্বিকের সাপেক্ষে অবস্থানের পরিবর্তনকে সরণ বলে।

কোনো বস্তুর আদি অবস্থান ও শেষ অবস্থানের মধ্যবতী ন্যূনতম দূরত্ব অর্থাৎ সরণরৈথিক দূরত্বই হচ্ছে সরণের মান এবং সরণের দিক হচ্ছে বস্তুর আদি অবস্থান থেকে শেষ অবস্থানের দিকে।

সরণ বস্তুর গতিপথের উপর নির্ভর করে না। কোনো একটি বস্তু A অবস্থান থেকে B অবস্থানে (চিত্র ২.৩) বিভিন্ন পথে যেতে পারে। কিন্তু বস্তুটির সরণ হবে A থেকে B—এর দিকে। A ও B এর মধ্যবর্তী ন্যূনতম দূরত্ব অর্থাৎ এ ক্ষেত্রে AB সরলরৈখিক দূরত্ব হলো সরণের মান AB=s এবং দিক হলো A থেকে B এর দিকে। যেহেতু সরণের মান ও দিক উভয়ই আছে, কাজেই এটি একটি ভেক্টর রাশি।

সরণের মাত্রা হলো দৈর্ঘ্যের মাত্রা।

$$\therefore [s] = L$$

সরণের একক হলো দৈর্ঘ্যের একক অর্থাৎ মিটার (m)। কোনো বস্তুর সরণ 60~m দক্ষিণ দিকে বলতে বুঝায় বস্তুটি তার আদি অবস্থান থেকে 60~m দক্ষিণ দিকে সরে গেছে।

দুতি

ধরা যাক, আগের উদাহরণে অভি ঐ 100 মিটার দূরত্ব 50 সেকেন্ডে পার হলো। একই দূরত্ব মিতু যদি 40 সেকেন্ডে পার হয়ে থাকে তাহলে কে দ্রুত চলেছে? অভি না মিতু? নিশ্চয়ই মিতু। কেননা তার সময় কম লেগেছে।

মনে করা যাক, অভি 100 মিটার দূরত্ব 50 সেকেন্ডে পার হলো। মিতু 75 মিটার দূরত্ব 30 সেকেন্ডে পার হলো। আমরা কি বলতে পারি অভি মিতুর চেয়ে ধীরে চলেছে? অভি কি মিতুর চেয়ে বেশি দূরত্ব অতিক্রম করেনি? কে বেশি দূত চলেছে অভি না মিতু তা জানতে হলে একটি নির্দিষ্ট সময়ে উভয়ের অতিক্রান্ত দূরত্বের তুলনা করতে হবে। ধরা যাক, এই নির্দিষ্ট সময় হচ্ছে 1 সেকেন্ড। সূতরাং,

1 সেকেন্ডে অভির অভিক্রান্ত দূরত্ব 100/50=2 মিটার

1 সেকেন্ডে মিতুর অতিক্রান্ত দূরত্ব 75/30 = 2.5 মিটার

সুতরাং, মিতু অভির চেয়ে দুত চলেছে, কেননা 1 সেকেন্ডে মিতু অভির চেয়ে বেশি দূরত্ব অতিক্রম করেছে।

এর থেকে আমরা বুঝতে পারি কে দ্রুত চলছে তা নির্ভর করে সময় এবং অতিক্রান্ত দূরত্বের উপর। কোনো বস্তু কত দ্রুত চলছে তথা দূরত্ব অতিক্রম করছে তা যে রাশি দিয়ে পরিমাপ করা হয় তাকে দ্রুতি বলা হয়। দ্রুতি বস্তুর অবস্থানের পরিবর্তনের হার নির্দেশ করে। সময়ের সাথে কোনো বস্তুর অবস্থানের পরিবর্তনের হারকে দ্রুতি বলে।

বস্তুর একক সময়ে অতিক্রান্ত দূরত্ব দারা দ্র্তি পরিমাপ করা হয়। সূতরাং,

দুতি =
$$\frac{\overline{\eta}$$
রত্ব

কোনো গতিশীল বস্তু যদি t সময়ে d দূরত্ব অতিক্রম করে, তাহলে দ্র্তি

$$v = \frac{d}{t}$$

দুতি দ্বারা অবস্থানের পরিবর্তনের হার কোন দিকে ঘটেছে তা জ্বানা যায় না, ফলে দুতির কোনো দিক নেই। সুতরাং দুতি একটি স্কেলার রাশি।

দু্তির মাত্রা হলো <mark>দূরত্ব</mark> সময়

$$\therefore [v] = \frac{L}{T} = LT^{-1}$$

যেহেতু দূরত্বকে সময় দিয়ে ভাগ করলে দ্র্তি পাওয়া যায়, কাজেই দূরত্বের একককে সময়ের একক দিয়ে ভাগ করলে দ্র্তির একক পাওয়া যাবে। দূরত্বের একক মিটার (m) এবং সময়ের একক সেকেন্ড (s) হওয়ায় দ্র্তির একক হবে মিটার/সেকেন্ড $(m\ s^{-1})$ । যেমন কোনো বস্তুর দ্র্তি $4\ m\ s^{-1}$ বলতে বুঝায় বস্তুটি প্রতি সেকেন্ডে $4\$ মিটার দূরত্ব অতিক্রম করে।

দ্রুতির একক মিটার/সেকেন্ড হলেও আমাদের উপলব্ধির সুবিধার জন্য আমরা অনেক সময় দূরত্বের একক কিলোমিটার এবং সময়ের একক ঘণ্টা ধরে দ্রুতির একক কিলোমিটার/ঘণ্টা $({
m km~h}^{-1})$ ধরি। গাড়ির স্পিডোমিটার যে দ্রুতি নির্দেশ করে তা ${
m km~h}^{-1}$ -এ দেওয়া থাকে।

গড় দ্রতি : কোনো বস্তুর গতিকালে যদি কখনো দ্র্তির মানের কোনো পরিবর্তন না হয় অর্থাৎ বস্তুটি যদি সর্বদা সমান সময়ে সমান দূরত্ব অতিক্রম করে তাহলে ঐ বস্তুর দ্র্তিকে সুষম বা সমদ্রতি বলে। আর যদি সমান সময়ে বস্তু সমান দূরত্ব অতিক্রম না করে তাহলে সেই দ্র্তিকে অসম দ্র্তি বলে।

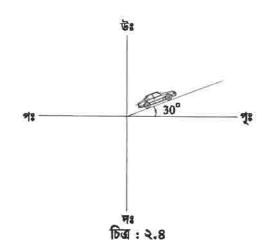
বস্তু যদি সুষম দ্রুতিতে না চলে তাহলে তার অতিক্রান্ত মোট দূরত্বকে সময় দিয়ে ভাগ করলে গড়ে প্রতি একক সময়ে অতিক্রান্ত দূরত্ব পাওয়া যায় । একে গড় দ্রুতি বলা হয় ।

সুতরাং, গড় দৃতি =
$$\frac{x + \sqrt{5}}{x + \sqrt{5}}$$

যদি কোনো গাড়ি ঢাকা থেকে দিনাজপুর যাওয়ার পথে সকাল 7 টায় রওনা হয়ে 6 ঘণ্টায় 300 কিলোমিটার পথ অতিক্রম করে, তবে তার গড় দুতি হচ্ছে $300~{\rm km}~/~6~h=50~{\rm km}~h^{-1}$ । এখানে গড় দুতি বলার কারণ গাড়িটি যে

তার চলার পথে প্রত্যেক ঘণ্টায় 50 কিলোমিটার দূরত্ব অতিক্রম করেছে এমন কোনো কথা নেই। গাড়িটি কখনো এর চেয়ে দুক্ত চলে থাকতে পারে আবার এর চেয়ে আস্তেও চলতে পারে।

ভাক্ষণিক দৃতি : আমরা যদি কোনো একটি বিশেষ মৃহুর্তে কোনো বস্তুর দৃতি জানতে চাই, যেমন উল্লিখিত গাড়িটি চলা শুরু করার ঠিক 33 মিনিট পূর্ণ হওয়ার মৃহুর্তে তার দুতি কত ছিল, তাহলে সেটা হবে তার ঐ সময়ের প্রকৃত দৃতি বা তাৎক্ষণিক দুতি। যেকোনো মৃহুর্তে প্রকৃত বা তাৎক্ষণিক দুতি বের করতে হলে আমাদেরকে অতি জল্প সময় ব্যবধানে অতিক্রান্ত দূরত্ব জানতে হবে। তারপর সেই দূরত্বকে সময় দিয়ে ভাগ করে তাৎক্ষণিক দুতি বের করতে হবে।


কেউ যদি সকাশ 10টা 32 মিনিট 43 সেকেন্ডের সময় গাড়িটির দুতি কত ছিল কিংবা কোনো স্কুলের পাশে হাইওয়েতে দেওয়া স্পীড ব্রেকার অতিক্রমকালে গাড়িটির দুতি কত ছিল তা জানতে চান তাহলে তাকে ঐ সময়ে স্পিডোমিটারের পাঠ কত ছিল তা দেখতে হবে। যেকোনো মুহুর্তে দুতি নির্ণয়ের জন্য যেমন হাইওয়েতে কোনো গাড়ি সর্বোচ্চ গতিসীমা লগুনে করছে কি না কিংবা বাংলাদেশের জাতীয় ক্রিকেট দলের দুততম বোলার মাশরাফি বিন মোর্তজ্ঞার কোন বলের দুতি কত তা নির্ণয় করতে হলে আমাদেরকে রাডার বা লেসার গানের সাহায্য নিতে হবে।

বেগ

অনেক সময় আমরা সাধারণ কথাবার্তায় বেগ শব্দ ব্যবহার করি এবং অনেকে তা করে থাকি দ্রুতি বুঝাতে। কিন্তু বিজ্ঞানের পরিভাষায় শব্দ দৃটির অর্থে ভিন্নতা আছে। দুতি কেবল কোনো বস্তুর দূরত্বের বা অবস্থানের পরিবর্তনের হার নির্দেশ করে, কোন দিকে সে পরিবর্তন হয়েছে তা বুঝায় না। বেগ দূরত্বের পরিবর্তনের হার বুঝাবার পাশাপাশি কোন দিকে সে পরিবর্তন ঘটে তাও নির্দেশ করে। বেগ দিয়ে নির্দিইট দিকে দূরত্বের পরিবর্তনের হার তথা সরগের হারকে বুঝায়। সূতরাং সময়ের সাথে কোনো বস্তুর সরগের হারকে বেগ বলে অর্থাৎ বস্তু নির্দিইট দিকে একক সময়ে যে পথ অভিক্রম করে তাই বেগ।

যদি কোনো বস্তু t সময়ে নির্দিষ্ট দিকে s দূরত্ব অভিক্রম করে ভাহলে কো, $v=rac{s}{t}$ ।

বেগের মাত্রা ও দুভির মাত্রা একই অর্থাৎ $[LT^{-1}]$ বেগের একক ও দুভির একক একই অর্থাৎ $m s^{-1}$ । বেগের মান ও দিক দুইই আছে। তাই কো একটি ভেট্টর রাশি। উদাহরণ হিসেবে একটি রাস্তার কথা ধরা যাক। রাস্তাটি কোনো স্থানে পূর্ব দিকের সাথে 30° কোণ করে উত্তর দিকে চলে গেছে (চিত্র: ২.৪)। সেই রাস্তায় যদি একটি গাড়ি 20 km h-1 সমদুভিতে চলে, তাহলে আমরা সঠিকভাবে কলতে পারব গাড়িটির বেগ পূর্ব দিকের সাথে 30° কোণে উত্তর দিকে 20kmh-1। কিম্তু যদি এই গাড়িটিই একটি বৃত্তাকার পথে 20 km h-1 সমদুভিতেই

চলে, তাহলে তার গতির দিক ক্রমাগত পরিবর্তন হবে। সূতরাং এর বেগও ক্রমাগত পরিবর্তন হবে যদিও এর দুতি সবসময় একই থাকবে। বস্তুর বেগের মানই তার দুতি। নির্দিষ্ট দিকে বস্তুর দুতিই তার বেগ।

যদি গতিশীল কোনো কন্তুর বেগের মান ও দিক অপরিবর্তিত থাকে তাহলে সেই কন্তুর কোকে সুষমকো বা সমকো বলে। শব্দের কো সুষমবেগের একটি প্রকৃষ্ট প্রাকৃতিক উদাহরণ। শব্দ নির্দিষ্ট মাধ্যমে নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট দিকে সমান সময়ে সমান পথ অতিক্রম করে, আর তা হচ্ছে 0° C তাপমাত্রায় বায়ুতে প্রতি সেকেন্ডে 332 মিটার। শব্দ কোনো নির্দিষ্ট দিকে প্রথম সেকেন্ডে 332 মিটার, দ্বিতীয় সেকেন্ডে 332 মিটার এবং এইরূপ প্রতি সেকেন্ডে 332 মিটার করে চলতে থাকে। এখানে শব্দের বেগের মান ও দিক একই থাকায় শব্দের কো 332 m s $^{-1}$ হলো সুষমকো।

কোনো বস্তুর যদি গতিকালে তার বেগের মান বা দিক বা উভয়ের পরিবর্তন ঘটে তাহলে বস্তুর সেই বেগকে অসম বেগ বলে। অর্থাৎ কোনো বস্তু যদি সমান সময়ে, সমান দূরত্ব অতিক্রম না করে কিংবা চলার সময় গতির দিক পরিবর্তন করে তাহলে সেই বেগ অসমবেগ হবে। আমরা যে চলাফেরা করি, গাড়ি চলে ইত্যাদির বেগ সাধারণত অসমবেগ।

ত্ত্বরণ ও মন্দন

কোনো বস্তু যদি সুষমবেগে না চলে তাহলে বস্তুর বেগের মানের কিংবা দিকের কিংবা উভয়ের পরিবর্তন হতে পারে। বস্তুর বেগের পরিবর্তন হলে আমরা বলি বস্তুর ত্বরণ হচ্ছে। ধরা যাক, একটি গাড়ি একটি সোজা সড়কে চলছে। এই গাড়িতে বসে মিলু প্রতি 8 সেকেন্ড পর পর গাড়ির স্পিডোমিটার থেকে গাড়িটির বেগ লিপিবন্ধ করছে। বিভিন্ন সময়ে এই গাড়ির বেগ ${\rm km\ h}^{-1}$ ও ${\rm m\ s}^{-1}$ এককে নিচের সারণিতে দেখানো হলো।

সারণি ২.২ বেগ – সময় সারণি

ক্রমিক নং	সময় (s)	বেগ (km h ⁻¹)	বেগ (m s ⁻¹)
1	0	0	0
2	8	14.4	4
3	16	28.8	8
4	24	43.2	12
5	32	57.6	16
6	40	72	20

এই সারণি থেকে দেখা যায় যে, গাড়িটির বেগ প্রথম 8 সেকেন্ডে 0 থেকে $4~{\rm m~s}^{-1}$ এ বৃদ্ধি পেয়েছে; পরের 8 সেকেন্ডেও এর বেগ বেড়েছে $4~{\rm m~s}^{-1}$ এবং এইরূপে বাকি সময়ও বেগ বেড়েছে। সুতরাং প্রতি 8 সেকেন্ড সময় ব্যবধানে গাড়িটির বেগের পরিবর্তন হয়েছে $4~{\rm m~s}^{-1}$ । অন্য কথায়, এক সেকেন্ড গাড়িটির বেগের পরিবর্তন হয়েছে $0.5~{\rm m~s}^{-1}$ । তাহলে সময়ের সাথে গাড়িটির বেগের পরিবর্তনের হার হলো $\frac{4{\rm ms}^{-1}}{8{\rm s}} = 0.5~{\rm m~s}^{-2}$ ।

বেগের পরিবর্তনের হার তথা একক সময়ে বেগের পরিবর্তনই ত্বরণ। সরল পথে চলমান বস্তুর সময়ের সাথে বেগ বৃদ্ধির হারকে ধনাত্মক ত্বরণ বা ত্বরণ এবং সময়ের সাথে বেগ হ্রাসের হারকে ঋণাত্মক ত্বরণ বলা হয়। অনেক সময় ঋণাত্মক ত্বরণকে মন্দন বলা হয়।

সময়ের সাথে বস্তুর অসমবেগের বৃদ্ধির হারকে ত্বরণ বলে। কোনো বস্তুর আদি বেগ যদি u হয় এবং t সময় পরে তার শেষ বেগ যদি v হয়, তাহলে,

t সময়ে বেগের পরিবর্তন = v - u

∴ একক সময়ে বেগের পরিবর্তন =
$$\frac{v-u}{t}$$

 \therefore বেগের পরিবর্তনের হার, অর্থাৎ ত্বরণ, $a=rac{v-u}{t}$

সুতরাং, ত্বরণ =
$$\frac{\cot$$
 পরিবর্তন সময়

ত্বরণ একটি ভেক্টর রাশি। এর দিক আছে। এর দিক হচ্ছে বেগের পরিবর্তনের দিকে। যেহেতু আমরা একটি সরল রেখা বরাবর গতি বিবেচনা করছি, কাজেই বেগের পরিবর্তন হবে হয় বেগের দিকে কিংবা বেগের বিপরীত দিকে। বেগ যদি বৃদ্ধি পায় তাহলে বেগের পরিবর্তন হবে বেগের দিকে। সেক্ষেত্রে ত্বরণ হবে ধনাত্মক। যদি বেগ হ্রাস পায় তাহলে বেগের পরিবর্তন হবে বেগের বিপরীত দিকে। সেক্ষেত্রে ত্বরণকে ঋণাত্মক ধরা হয় অর্থাৎ মন্দন হয়।

মাত্রা : ত্বরণের মাত্রা হলো বিগ সময়

অর্থাৎ, ত্বরণ =
$$\frac{\text{বেগ}}{\text{সময়}} = \frac{\text{সরণ}}{\text{সময়} \times \text{সময}} = \frac{\text{সরণ}}{\text{সময়}^2}$$

$$\therefore [a] = \frac{L}{T^2} = LT^{-2}$$

একক : ত্বরণের একক হলো $\frac{-\cot \theta}{-\cot \theta}$ এর একক।

অর্থাৎ,
$$\frac{m s^{-1}}{s}$$
 বা $m s^{-2}$

কোনো বস্তুর ত্বরণ $5~{
m m~s}^{-2}$ উত্তর দিকে বলতে বুঝায় বস্তুটির বেগ উত্তর দিকে $1~{
m s}$ এ $5~{
m m~s}$ $^{-1}$ বৃদ্ধি পায়।

সুষম ত্বরণ ও অসম ত্বরণ : ত্বরণ দুই রকমের হতে পারে, যথা— সুষম ত্বরণ ও অসম ত্বরণ। কোনো বস্তুর বেগ যদি নির্দিষ্ট দিকে সবসময় একই হারে বাড়তে থাকে তাহলে সে ত্বরণকে সুষম ত্বরণ বা সমত্বরণ বলে। আর বেগ বৃদ্ধির হার যদি সমান না থাকে, তাহলে সে ত্বরণকে অসম ত্বরণ বলা হয়।

সুষম ত্বরণের একটি উদাহরণ হলো অভিকর্ষের প্রভাবে মুক্তভাবে পড়ন্ত বস্তুর ত্বরণ। যদি একটি বস্তু ভূপৃষ্ঠে মুক্তভাবে পড়তে থাকে তখন তার ত্বরণ হয় $9.8~{
m m~s^{-2}}$ অর্থাৎ, বস্তুটি যখন ভূপৃষ্ঠের দিকে আসতে থাকে তখন এর বেগ প্রতি সেকেন্ডে $9.8~{
m m~s^{-1}}$ করে বাড়তে থাকে।

আর আমরা সাধারণভাবে যে সকল চলমান বস্তু দেখি, যেমন গাড়ি, সাইকেল, রিকশা ইত্যাদির ত্বরণ হয় অসম।

গাণিতিক উদাহরণ ২.১ : একটি গাড়ির বেগ $5~{
m m~s}^{-1}$ থেকে সুষমভাবে বৃদ্ধি পেয়ে $10~{
m s}$ পরে $45~{
m m~s}^{-1}$ হয়। গাড়িটির ত্বরণ বের কর।

আমরা জানি,
$$a = \frac{v - u}{t}$$

$$\text{বা, } a = \frac{45 \,\mathrm{m \, s^{-1}} - 5 \,\mathrm{m \, s^{-1}}}{10 \,\mathrm{s}}$$

$$= \frac{40 \,\mathrm{m \, s^{-1}}}{10 \,\mathrm{s}}$$

$$= 4 \,\mathrm{m \, s^{-2}}$$

উ : 4 m s⁻²

গাণিতিক উদাহরণ ২.২ : একটি গাড়ির বেগ $20~{
m m~s}^{-1}$ থেকে সুষমভাবে হ্রাস পেয়ে $4~{
m s}$ পরে $4~{
m m~s}^{-1}$ হয় । গাড়িটির ত্বরণ বের কর । আমরা জানি .

$$a=rac{v-u}{t}$$
 এখানে, আদি বেগ, $u=20~{
m m~s^{-1}}$ বা, $a=rac{4\,{
m m\,s^{-1}}-20\,{
m m\,s^{-1}}}{4\,{
m s}}$ লেষ বেগ, $v=4~{
m m~s^{-1}}$ সময়, $t=4~{
m s}$ ভূরণ , $a=?$

উ: - 4 m s⁻²

২.৫ গতি সংক্রাম্ত বিভিন্ন রাশির পারস্পরিক সম্পর্ক : গতির সমীকরণ

Equations of motion

মাত্র চারটি সমীকরণ ব্যবহার করে কোনো গতিশীল বস্তুর গতি সংক্রান্ত বিভিন্ন সমস্যার সমাধান করা যায়। এই সমীকরণগুলাকে বলা হয় গতির সমীকরণ। এই সমীকরণগুলা প্রযোজ্য হয় বস্তু যখন সুষম ত্বরণে সরলরেখায় গতিশীল থাকে। ধরা যাক, কোনো বস্তু u আদিবেগ নিয়ে a সুষম ত্বরণে t সময় চলে s দূরত্ব অতিক্রম করে শেষ বেগ v প্রান্ত হয়। আমরা গতির সমীকরণগুলো নিম্নোক্ত প্রতীকগুলোর সাহায্যে প্রকাশ করি। এই প্রতীকগুলো হলো :

u = আদি বেগ অর্থাৎ সময় গণনার শুরুতে যে বেগ

a = সুষম ত্বরণ

t = অতিক্রান্ত সময়

s = সরণ অর্থাৎ t সময়ে অতিক্রান্ত দূরত্ব

v = শেষ বেগ অর্থাৎ t সময় শেষে বস্তুর বেগ।

এই পাঁচটি রাশি "suvat" পরস্পর এমনভাবে সম্পর্কযুক্ত যে এর যেকোনো তিনটি রাশি জানা থাকলে বাকি দুইটি রাশি বের করা যায়। এই জন্য চারটি সমীকরণ আছে। প্রত্যেকটি সমীকরণে চারটি করে রাশি আছে। জানা রাশিগুলোর মান বসিয়ে এই সমীকরণগুলোর সাহায্যে অজ্ঞাত রাশিগুলো সহজে নির্ণয় করা যায়।

২.৪ অনুচ্ছেদে আমরা দেখেছি ত্বরণ,

$$a = \frac{v - u}{t}$$

$$\therefore \quad v = u + at \tag{2.1}$$

আবার ঐ অনুচ্ছেদে আমরা পেয়েছি,

গড় দুতি =
$$\frac{$$
 অতিক্রান্ত দূরত্ব $}{$ সময়

$$\sqrt[4]{t}, \frac{u+v}{2} = \frac{s}{t}$$

$$\therefore s = \frac{(u+v)}{2}t$$
(2.2)

হিসাব কর : (2.1) সমীকরণের v এর মান (2.2) সমীকরণে বসাও।

$$\therefore s = ut + \frac{1}{2}at^2 \tag{2.3}$$

হিসাব কর : (2.1) সমীকরণ থেকে t এর মান বের করে (2.2) সমীকরণে বসিয়ে বন্ধ্র গুণন কর এবং পদগুলোকে বিন্যুস্ত কর ।

$$\therefore v^2 = u^2 + 2as \tag{2.4}$$

যদি কোনো সমস্যায় বলা হয় বস্তুটি স্থির অবস্থান থেকে যাত্রা শুরু করেছে, তাহলে আদি বেগ u=0 হবে।

গাণিতিক উদাহরণ ২.৩ : স্থির অবস্থান থেকে চলন্ত একটি গাড়িতে $2~{
m m~s}^{-2}$ ত্বরণ প্রয়োগ করা হলে এর বেগ $20~{
m m~s}^{-1}$ হলো। কত সময় ধরে ত্বরণ প্রয়োগ করা হয়েছিল ? আমরা জানি .

$$v=u+at$$
বা, $t=rac{v-u}{a}$
 $=rac{20\,\mathrm{m\,s^{-1}}-0}{2\,\mathrm{m\,s^{-2}}}$
 $=10\,\mathrm{s}$
উ : $10\,\mathrm{s}$

গাণিতিক উদাহরণ ২.8 : $54~{\rm km~h^{-1}}$ বেগে চলন্ত একটি গাড়িতে $5~{\rm s}$ যাবত $4~{\rm m~s^{-2}}$ ত্বরণ প্রয়োগ করা হলো। গাড়িটির শেষ বেগ কত এবং ত্বরণকালে কত দূরত্ব অতিক্রম করবে?

আমরা জানি,

$$v = u + at$$

= 15 m s⁻¹ + 4 m s⁻² × 5 s
= 35 m s⁻¹

আবার,

$$s = ut + \frac{1}{2}at^{2}$$
= 15 m s⁻¹×5 s+\frac{1}{2} × 4 m s⁻²×(5 s)²
= 75 m + 50 m
= 125 m

উ : শেষ বেগ $35~m~s^{-1}$; দূরত্ব 125~m

এখানে, আদিবেগ,
$$u = 54 \text{ km h}^{-1}$$

$$= 54 \frac{\text{km}}{\text{h}} = \frac{54 \times 10^3 \text{ m}}{3600 \text{ s}} = 15 \text{ m s}^{-1}$$
ত্বগ, $a = 4 \text{ m s}^{-2}$
সময়, $t = 5 \text{ s}$
শেষ বেগ, $v = ?$
দূরত্ব , $s = ?$

গাণিতিক উদাহরণ ২.৫: সোজা রাস্তায় স্থির অবস্থান থেকে একটি বাস $10~{
m m~s}^{-2}$ সুষম ত্বরণে চলার সময় $80{
m m}$ দূরত্বে রাস্তার পাশে দাঁড়ানো এক ব্যক্তিকে কত বেগে অতিক্রম করবে? আমরা জানি.

$$v^2 = u^2 + 2as$$
বা, $v^2 = 0 + 2 \times 10 \text{ m s}^{-2} \times 80 \text{ m}$
 $= 1600 \text{ m}^2 \text{ s}^{-2}$
 $\therefore v = 40 \text{ m s}^{-1}$
উ : 40 m s^{-1}

২.৬ পড়ন্ত ক্স্তুর গতি

Motion of falling bodies

অভিকর্ষ: এই মহাবিশ্বের প্রত্যেকটি বস্তু কণাই একে অপরকে নিজের দিকে আকর্ষণ করে। এই মহাবিশ্বের যেকোনো দুইটি বস্তুর মধ্যে যে আকর্ষণ তাকে মহাকর্ষ বলে। দুইটি বস্তুর একটি যদি পৃথিবী হয় তবে তাকে অভিকর্ষ বলে অর্থাৎ কোনো বস্তুর উপর পৃথিবীর আকর্ষণকে অভিকর্ষ বলা হয়। মহাবিশ্বের যেকোনো দুইটি বস্তুর আকর্ষণ সম্পর্কে নিউটনের একটি সূত্র আছে যা নিউটনের মহাকর্ষ সূত্র নামে পরিচিত।

নিউটনের গতির দিতীয় সূত্র থেকে আমরা জ্ঞানি যে বল প্রযুক্ত হলে কোনো বস্তুর ত্বরণ হয়, সূতরাং অভিকর্ষ বলের প্রভাবেও বস্তুর ত্বরণ হয়। এই ত্বরণকে অভিকর্ষজ ত্বরণ বলা হয়।

অভিকর্ষ বলের প্রভাবে ভূপৃষ্ঠে মুক্তভাবে পড়ন্ত কোনো বস্তুর বেগ বৃদ্ধির হারকে অভিকর্ষজ ত্বরণ বলে। একে g দিয়ে প্রকাশ করা হয়।

যেহেতু অভিকর্ষন্ধ ত্বরণ এক প্রকার ত্বরণ, সূতরাং এর মাত্রা হবে $[LT^{-2}]$ এবং একক হবে ${
m m~s}^{-2}$ । ভূপৃষ্ঠের কোনো স্থানে g এর মানের রাশিমালা হচ্ছে,

$$g = \frac{GM}{R^2}$$

এখানে, M= পৃথিবীর ভর

G= একটি বিশ্বজনীন ধ্বক। একে মহাকধীয় ধ্বক বলে।

R= পৃথিবীর ব্যাসার্ধ।

যেহেতু পৃথিবী সম্পূর্ণ গোলাকার নয়, মেরু অঞ্চলে একটুখানি চাপা, তাই পৃথিবীর ব্যাসার্ধ Rও ধ্রুবক নয়। সুতরাং ভূপৃষ্ঠের সর্বত্র g এর মান সমান নয়। মেরু অঞ্চলে পৃথিবীর ব্যাসার্ধ R সবচেয়ে কম বলে সেখানে g এর মান সবচেয়ে বেশি। আর বিষুব অঞ্চলে R এর মান সবচেয়ে বেশি বলে g এর মান সবচেয়ে কম।

ভূপৃষ্ঠে বিভিন্ন স্থানে g এর মান বিভিন্ন বলে 45° অক্ষাংশে সমুদ্র সমতলে g এর মানকে আদর্শ মান ধরা হয় । g এর এ আদর্শ মান হচ্ছে $9.80665~{
m m~s^{-2}}$ । হিসাবের সুবিধার জন্য আদর্শমান ধরা হয় $9.8~{
m m~s^{-2}}$ বা $9.81~{
m m~s^{-2}}$ ।

পড়ম্ভ বস্তু

কোনো বস্তুকে উপর থেকে ছেড়ে দিলে অভিকর্ষের প্রভাবে ভূমিতে পৌছায়। একই উচ্চতা থেকে একই সময় একটি ভারী ও একটি হালকা বস্তু ছেড়ে দিলে এগুলো কি একই সময়ে ভূপৃষ্ঠে পৌছাবে?

এক টুকরা পাথর ও এক টুকরা কাগজ একই উচ্চতা থেকে ছেড়ে দিলে দেখা যায় যে, পাথরটি কাগজের আগেই মাটিতে পৌছায়। যেহেতু বস্তুর উপর ক্রিয়াশীল অভিকর্ষজ ত্বরণ বস্তুর ভরের উপর নির্ভর করে না, তাই কাগজ ও পাথরের উপর ক্রিয়াশীল অভিকর্ষজ ত্বরণ একই। সূতরাং তাদের একই সময়ে মাটিতে পৌছানোর কথা। বাতাসের বাধার জন্য বস্তু দুইটি ভিন্ন সময়ে মাটিতে পৌছায়। বাতাসের বাধা না থাকলে এগুলো অবশ্যই একই সময় মাটিতে পৌছাত।

পড়ন্ত বস্তুর সূত্রাবিদি: পড়ন্ত বস্তু সম্পর্কে গ্যাদিলিও তিনটি সূত্র বের করেন। এগুলোকে পড়ন্ত বস্তুর সূত্র বলে। এই সূত্রগুলো একমাত্র স্থির অবস্থান থেকে বিনা বাধায় পড়ন্ত বস্তুর ক্ষেত্রে প্রযোজ্য অর্থাৎ বস্তু পড়ার সময় স্থির অবস্থান থেকে পড়বে, এর কোনো আদি বেগ থাকবে না। বস্তু বিনা বাধায় মুক্তভাবে পড়বে অর্থাৎ এর উপর অভিকর্ষজ বল ছাড়া অন্য কোনো বল ক্রিয়া করবে না। যেমন— বাতাসের বাধা এর উপর ক্রিয়া করবে না।

প্রথম সূত্র : স্থির অবস্থান ও একই উচ্চতা থেকে বিনা বাধায় পড়ন্ত সকল বস্তু সমান সময়ে সমান পথ অতিক্রম করে।

দিতীয় সূত্র : স্থির অবস্থান থেকে বিনা বাধায় পড়ন্ত বস্তুর নির্দিষ্ট সময়ে (t) প্রাশ্ত বেগ (v) ঐ সময়ের সমানুপাতিক অর্থাৎ, $v \propto t$

ভৃতীয় সূত্র : স্থির অবস্থান থেকে বিনা বাধায় পড়ন্ত বস্তু নির্দিষ্ট সময়ে যে দূরত্ব (h) অতিক্রম করে তা ঐ সময়ের (t) বর্গের সমানুপাতিক অর্থাৎ, $h \propto t^2$

পড়ন্ত বস্তুর সমীকরণ:

ধরা যাক, কোনো বস্তু u আদি বেগ নিয়ে অভিকর্ষের প্রভাবে মুক্তভাবে পড়ছে। t সময় পরে বস্তুটি v বেগ প্রাশ্ত হয়। বস্তুটি যদি এই সময়ে h দূরত্ব নেমে আসে, তাহলে গতির সমীকরণে দূরত্ব s এর পরিবর্তে t এবং ত্বরণ t এবং বিরবর্তে অভিকর্ষজ ত্বরণ t বসালেই পড়ন্ত বস্তুর গতির নিম্নোক্ত সমীকরণগুলো পাওয়া যাবে।

$$v = u + gt$$

$$h = \frac{(u + v)}{2}t$$

$$h = ut + \frac{1}{2}gt^{2}$$

$$v^{2} = u^{2} + 2gh$$

গাণিতিক উদাহরণ ২.৬ : $50~{
m m}~$ উঁচু দালানের ছাদ থেকে কোনো কচ্ছু ছেড়ে দিলে এটি কত বেগে ভূপৃষ্ঠকে আঘাত করবে ? ${
m g}=9.8~{
m m~s}^{-2}$

আমরা জানি, পড়ন্ত বস্তুর ক্ষেত্রে

$$v^2 = u^2 + 2gh$$
বা, $v^2 = 0 + 2 \times 9.8 \text{ m s}^{-2} \times 50 \text{ m}$
 $= 980 \text{ m}^2 \text{ s}^{-2}$
 $\therefore v = 31.3 \text{ m s}^{-1}$
উ: 31.3 m s^{-1}

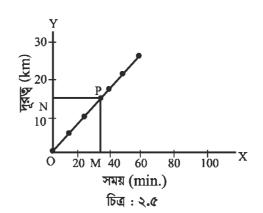
এখানে,
আদিবেগ, $u = 0$
অতিকান্ত দূরত্ব, $h = 50 \text{ m}$
শেষ বেগ, $v = ?$
 $g = 9.8 \text{ m s}^{-2}$

২.৭ গতি ও লেখচিত্র

Motion and graph

১. দূরত্ব-সময় শেখচিত্র

সময় অতিবাহিত হওয়ার সাথে সাথে একটি গতিশীল বস্তুর অবস্থানের পরিবর্তন ঘটে। বস্তুর অতিক্রান্ত দূরত্ব সময়ের উপর নির্ভর করে। এই সম্পর্ক একটি লেখচিত্রের মাধ্যমে প্রকাশ করা যায়। এই ক্ষেত্রে ছক কাগজের X—অক্ষবরাবর সময় (t) এবং Y— অক্ষবরাবর অতিক্রান্ত দূরত্ব (s) স্থাপন করা হয়। এই লেখচিত্রকে দূরত্ব —সময় লেখচিত্র বলা হয়। এই লেখচিত্র থেকে সহজে বস্তুর বেগ নির্ণয় করা যায়। নিম্নে সুষম বেগ ও অসম বেগের ক্ষেত্রে দূরত্ব —সময় লেখচিত্র থেকে বেগ নির্ণয়ের পদ্ধতি আলোচনা করা হলো। জটিলতা পরিহারের জন্য আমরা এখানে কেবল সরল রেখা বরাবর চলমান বস্তুর গতি আলোচনা করব। এই ক্ষেত্রে একটি গতিশীল বস্তুর বেগের দিকের কোনো পরিবর্তন হবে না; সুতরাং কেবল মানের পরিবর্তনের জন্য বেগের পরিবর্তন ঘটবে।

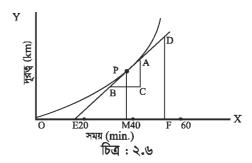

(ক) সুষম বেগের ক্ষেত্রে:

ধরা যাক, কোনো সোজা সমতল রাস্তায় সিএনজি (CNG) চালিত দূষণমুক্ত একটি অটোরিকশা চলছে। প্রতি 12 মিনিট পরপর এর অতিক্রান্ত দূরত্ব নিচের সারণিতে দেখানো হলো।

দূরত্ব –সময় সারণি

সারণি ২.৩

সময়, <i>t</i>	দূরত্ব, s
(min)	(km)
0	0
12	6
24	12
36	18
48	24
60	30


উপরের সারণিতে বর্ণিত গতির জন্য দূরত্ব -সময় লেখ চিত্রটি ২.৫ চিত্রে দেখানো হলো। এই চিত্র থেকে যেকোনো সময়ে ধরা যাক, 32 মিনিটে অটোরিকশাটি কর্তৃক অতিক্রান্ত দূরত্ব বের করা যাবে। এজন্য আমাদেরকে প্রথমে X- অক্ষের উপর 32 মিনিট নির্দেশকারী বিন্দুটি (M) চিহ্নিত করতে হবে। তারপর ঐ বিন্দু থেকে লেখচিত্রের উপর Y অক্ষের সমান্তরাল একটি রেখা আঁকতে হবে। মনে করা যাক, রেখাটি লেখচিত্রের উপর P বিন্দুতে মিলিত হয়। এখন P বিন্দু থেকে Y অক্ষের উপর লন্দ্র টানতে হবে। এই লন্দ্র Y অক্ষকে যে বিন্দুতে Y ছেদ করে তাই হচ্ছে Y মিনিটে অতিক্রান্ত দূরত্ব Y অতিক্রম করেছে। সূতরাং, লেখচিত্র থেকে যেকোনো সময় Y অর জন্য অতিক্রান্ত দূরত্ব Y পাওয়া যায়।

$$\therefore$$
 বেগ $= \frac{\overline{y}$ রস্ব $= \frac{PM}{OM} = \frac{ON}{OM}$, এখানে , $\frac{PM}{OM}$ কে OP রেখার ঢাল (slope) বলে ।

নিচ্ছে কর : একটি ছক কাগজ নাও। এই কাগজে তোমার পছন্দমতো ও সুবিধাজনক একক নিয়ে উপরের সারণিতে বর্ণিত গতির জন্য দূরত্ব —সময় লেখ চিত্রটি অজ্জন কর। এই লেখচিত্র থেকে 32 মিনিটে অতিক্রান্ত দূরত্ব এবং বেগ বের কর। 44 মিনিটে অতিক্রান্ত দূরত্ব ও বেগ কত হবে?

(খ) অসম বেগের ক্ষেত্রে :

২.৬ চিত্রে অসম বেগে গতিশীল একটি বস্তুর দূরত্ব—সময় লেখচিত্র দেখানো হলো। যেহেতু এ ক্ষেত্রে বস্তুটি সমান সময়ে সমান দূরত্ব অতিক্রম করে না তাই লেখচিত্রটি সরল রেখা হবে না। এটি একটি বক্র রেখা হবে। যেহেতু এ ক্ষেত্রে বস্তুটি সুষম বেগে চলছে না,

কাজেই গতিকালের সকল মুহূর্তে এর বেগ সমান হয় না। লেখচিত্র থেকে আমরা বস্তুটির যেকোনো মুহূর্তের বেগ নির্ণয় করতে পারব। ধরা যাক 36 মিনিটে বস্তুটির বেগ নির্ণয় করতে হবে। এজন্য X অক্ষের উপর 36 মিনিট নির্দেশকারী বিন্দু (M) চি $\widehat{\Box}$ িত করতে হবে। M বিন্দু থেকে Y অক্ষের সমান্তরাল একটি রেখা আঁকতে হবে। ধরা যাক রেখাটি লেখচিত্রের উপর (P) বিন্দুতে মিলিত হলো। এবার P বিন্দুতে বেগ নির্ণয় করতে হলে আমাদেরকে একটি অতি ক্ষুদ্র সমকোণী ত্রিভুজ ABC বিবেচনা করতে হবে যার অতিভুজ AB এত ক্ষুদ্র যে এটি P বিন্দুর অতি সন্নিকটে বক্র রেখার সাথে কার্যত মিলে যায়। অন্য কথায়, আমরা এই বক্র রেখার একটি খন্ডাংশ বিবেচনা করছি যেটি সরল রেখারূপে গণ্য করার মতো যথেক্ট ক্ষুদ্র।

তাহলে, P কিদুতে

বেগ
$$= \frac{AC}{BC}$$
 দ্বারা নির্দেশিত দূরত্ব

বা,
$$v = \frac{AC}{BC}$$

কিন্দু এত ছোট ব্রিভুজ বিবেচনা করে তার থেকে পরিমাপ করে সঠিক ফল পাওয়া মুশকিল। তাই আমরা P কিন্দুতে ED স্পর্শক আঁকি এবং ABC ব্রিভুজের সদৃশ কিন্দু অপেক্ষাকৃত বড় ব্রিভুজ DEF অঙ্কন করি।

এখন ত্রিভুজ ABC এবং ত্রিভুজ DEF থেকে পাই , $\frac{AC}{BC}\!=\!\frac{DF}{EF}$

সুতরাং,
$$v = \frac{DF}{EF}$$

কিন্তু
$$rac{DF}{EF}$$
 হলো ED এর ঢাল।

সূতরাং P বিন্দুতে বেগ হলো ঐ বিন্দুতে অজ্ঞিত স্পর্শকের ঢাল। তাই বলা যায় দূরত্ব—সময় লেখচিত্রের যেকোনো বিন্দুতে অজ্ঞিত স্পর্শকের ঢাল ঐ বিন্দুতে বেগ নির্দেশ করে।

২. বেগ-সময় লেখচিত্র

অসম বেগে চলমান বস্তুর বেগ সময়ের উপর নির্তর করে। এই সম্পর্ক একটি লেখচিত্রের মাধ্যমে প্রকাশ করা যায়। এই ক্ষেত্রে ছক কাগজের X —অক্ষ বরাবর সময় (t) এবং Y—অক্ষ বরাবর বেগ (v) স্থাপন করা হয়। এই লেখচিত্রকে বেগ—সময় লেখচিত্র বলা হয়। এই লেখচিত্র থেকে সহজে যেকোনো মুহূর্তে বেগ এবং ত্বরণ অর্থাৎ সময়ের সাথে বেগের পরিবর্তনের হার নির্ণয় করা যায়। নিম্নে সুষম ত্বরণের ক্ষেত্রে বেগ—সময় লেখচিত্র থেকে ত্বরণ নির্ণয়ের পম্পতি আলোচনা করা হলো।

সুষম ত্বরণের ক্ষেত্রে

একটি বস্তু যখন সুষম ত্বরণে চলে তখন তার সমান সময়ে বেগের বৃন্ধি সমান হয়। সুতরাং X–অক্ষের দিকে সময়

(t) এবং Y-অক্ষের দিকে বেগ (v) নিয়ে বেগ—সময় লেখচিত্র আঁকলে সেটি একটি সরল রেখা হবে (চিত্র: ২.৭)। এখন আমরা এই লেখচিত্রের উপর যেকোনো একটি বিন্দু P নেই। P থেকে X-অক্ষের উপর PM লম্ব টানি। তাহলে যেকোনো সময় OM এর জন্য বেগের পরিবর্তন PM পাওয়া যায়।

সুতরাং ত্বরণ
$$a=rac{ ext{cathar}}{ ext{max}} rac{ ext{vlat}}{ ext{shar}} = rac{PM}{OM}$$

কিম্পু
$$\frac{PM}{OM}$$
 হচ্ছে OP –এর ঢাল।

তাই বলা যায় বেগ–সময় লেখচিত্রের যেকোনো বিন্দুতে অঙ্কিত স্পর্শকের ঢাল ঐ বিন্দুতে ত্বরণ নির্দেশ করে।

নিচ্ছে কর : নিচের সারণিতে পাঁচ সেকেন্ড পরপর একটি গাড়ির বেগ দেওয়া হলো ।

সারণি : ২.৪

সময়	বেগ (km h ⁻¹)	বেগ (m s ⁻¹)
(s)		
0	0	0
5	9	2.5
10	18	5.0
15	27	7.5
20	36	10.0
25	45	12.5
30	54	15.0

একটি ছক কাগন্ধ নাও। এই কাগন্ধে তোমার পহন্দমতো সুবিধান্ধনক একক নিয়ে উপরের সারণিতে বর্ণিত গতির জন্য বেগা–সময় শেখচিত্রটি অজ্জন কর। এই শেখচিত্র থেকে 12 সেকেন্ডের সময় গাড়িটির বেগ ও ত্বরণ বের কর ।

অনুসন্ধান–২.১

একটি ঢালু তক্তার উপরে মার্বেল গড়িয়ে পড়তে দিয়ে গড় দুতি নির্ণয়।

উদ্দেশ্য : বিভিন্ন ত্বরণে অতিক্রান্ত একই দূরত্বের জন্য সময় নির্ণয় করে প্রতিক্ষেত্রে গড় দ্র্তি নির্ণয়। যদ্যবাধি : তক্তা, মিটার স্কেল,মার্বেল, থামা ঘড়ি।

কাচ্ছের ধারা :

- ১. যথাসম্ভব লম্বা একখানা তক্তা নাও। মিটার স্কেলের সাহায্যে এর দৈর্ঘ্য নির্ণয় কর।
- ২. তক্তার এক প্রান্তের নিচে ইট বা বই দিয়ে উঁচু কর, ফলে তক্তাটি ঢালু হয়ে থাকবে।
- তক্তাটির উপরের প্রান্থে একটি মার্বেল ধর। মার্বেলটি ছেড়ে দেওয়ার সাথে সাথে থামা ঘড়ি চালু কর। মার্বেলটি
 যখন তক্তা বেয়ে ভূমিতে আঘাত করবে তখন থামা ঘড়িটি বন্ধ করে দাও।

- ৭. ধারা –৪ এ উল্লিখিত গতির বৈশিষ্ট্যগুলো খাতায় লিপিবন্দ্ব কর। এক্ষেত্রে প্রত্যেকের গতি বৃত্তাকার গতি এবং পর্যায়বৃত্ত গতি হওয়ার কারণ ব্যাখ্যা কর।
- ৮. ধারা ৫ এ উল্লিখিত গতির বৈশিষ্ট্যগুলো খাতায় লিপিবন্ধ কর। এক্ষেত্রে প্রত্যেকের গতি পর্যায়বৃত্ত গতি এবং স্পন্দন গতি হওয়ার কারণ ব্যাখ্যা কর।
- ৯. এই অনুসন্ধানের মাধ্যমে প্রাপত বিভিন্ন গতির তুলনা কর। এগুলোর মধ্যে পার্থক্য লিখ।

অনুসন্ধান–২.৩

১০০ মিটার দৌড়ে শিক্ষার্থীর দুতি নির্ণয় এবং লেখচিত্রে তা বিশ্লেষণ।

উদ্দেশ্য : বিভিন্ন সময়ে অতিক্রান্ত দূরত্ব নির্ণয় করে গড় দ্রুতি নির্ণয়, দূরত্ব—সময় লেখচিত্র অজ্ঞকন এবং যেকোনো সময়ে তাৎক্ষণিক দুতি নির্ণয়।

যশ্ত্রপাতি : মিটার স্কেল, থামা ঘড়ি, দড়ি অথবা মাপ ফিতা।

কাচ্ছের ধারা :

- স্কুলের খেলার মাঠের (স্কুলের নিজস্ব মাঠ না থাকলে অন্য কোনো মাঠে) এক প্রান্তে একটি দড়ি সোজা করে বিছাও।
- ২. এই দড়ি থেকে 25 মিটার দূরে দূরে আরো চারটি দড়ি বিছাও। সুতরাং শেষ দড়িটি হবে 100 মিটার দূরে।
- ৩. প্রথম দড়ির কাছে তুমি দাড়াও এবং বাকি চারটি দড়ির পাশে তোমার চার বন্ধু চারটি থামা ঘড়ি নিয়ে দাঁড়াবে।
- 8. শিক্ষক বাঁশিতে ফুঁ দেওয়ার সাথে সাথে তুমি দৌড় শুরু করবে এবং প্রত্যেকে যার যার থামা ঘড়ি চালু করবে।
- ৫. দৌড়বিদ যখন যার সামনের দড়ি অতিক্রম করবে তখন সে তার থামা ঘড়ি বন্ধ করবে। ঘড়ির পাঠ থেকে ঐ দূরত্বের জন্য সময় পাওয়া যাবে।
- দূরত্বকে সময় দিয়ে ভাগ করে ঐ সময় ব্যবধানের জন্য বা ঐ দূরত্বের জন্য গড় দুতি পাওয়া যাবে।
- ৭. এখন একটি ছক কাগজে X –অক্ষের দিকে সময় (t) এবং Y –অক্ষের দিকে দূরত্ব (d) স্থাপন করে একটি লেখচিত্র অজ্জন কর।
- ৮. লেখচিত্র থেকে যেকোনো সময়ে অতিক্রান্ত দূরত্ব এবং এই সময় ব্যবধানের গড় দ্রুতি এবং ঐ মুহূর্তের তাৎক্ষণিক দ্রুতি নির্ণয় কর।
- বিভিন্ন দ্র্তিতে হেঁটে এবং দৌড়ে এই পরীক্ষণটির পুনরাবৃত্তি কর।
- ১০. এইভাবে প্রত্যেক শিক্ষার্থী পরীক্ষণটি সম্পন্ন কর।

অনুসন্ধানের ছক

পাঠ	অতিক্রান্ত দূরত্ব (m)	সময় (s)	গড় দুতি = দূরত্ব (m s ⁻¹)
1			
2			
3			
4			

- ৭. ধারা –৪ এ উল্লিখিত গতির বৈশিষ্ট্যগুলো খাতায় লিপিবন্দ্ব কর। এক্ষেত্রে প্রত্যেকের গতি বৃত্তাকার গতি এবং পর্যায়বৃত্ত গতি হওয়ার কারণ ব্যাখ্যা কর।
- ৮. ধারা ৫ এ উল্লিখিত গতির বৈশিষ্ট্যগুলো খাতায় লিপিবন্ধ কর। এক্ষেত্রে প্রত্যেকের গতি পর্যায়বৃত্ত গতি এবং স্পন্দন গতি হওয়ার কারণ ব্যাখ্যা কর।
- ৯. এই অনুসন্ধানের মাধ্যমে প্রাপত বিভিন্ন গতির তুলনা কর। এগুলোর মধ্যে পার্থক্য লিখ।

অনুসন্ধান–২.৩

১০০ মিটার দৌড়ে শিক্ষার্থীর দুতি নির্ণয় এবং লেখচিত্রে তা বিশ্লেষণ।

উদ্দেশ্য : বিভিন্ন সময়ে অতিক্রান্ত দূরত্ব নির্ণয় করে গড় দ্রুতি নির্ণয়, দূরত্ব—সময় লেখচিত্র অজ্ঞকন এবং যেকোনো সময়ে তাৎক্ষণিক দুতি নির্ণয়।

যশ্ত্রপাতি : মিটার স্কেল, থামা ঘড়ি, দড়ি অথবা মাপ ফিতা।

কাচ্ছের ধারা :

- স্কুলের খেলার মাঠের (স্কুলের নিজস্ব মাঠ না থাকলে অন্য কোনো মাঠে) এক প্রান্তে একটি দড়ি সোজা করে বিছাও।
- ২. এই দড়ি থেকে 25 মিটার দূরে দূরে আরো চারটি দড়ি বিছাও। সুতরাং শেষ দড়িটি হবে 100 মিটার দূরে।
- ৩. প্রথম দড়ির কাছে তুমি দাড়াও এবং বাকি চারটি দড়ির পাশে তোমার চার বন্ধু চারটি থামা ঘড়ি নিয়ে দাঁড়াবে।
- 8. শিক্ষক বাঁশিতে ফুঁ দেওয়ার সাথে সাথে তুমি দৌড় শুরু করবে এবং প্রত্যেকে যার যার থামা ঘড়ি চালু করবে।
- ৫. দৌড়বিদ যখন যার সামনের দড়ি অতিক্রম করবে তখন সে তার থামা ঘড়ি বন্ধ করবে। ঘড়ির পাঠ থেকে ঐ দূরত্বের জন্য সময় পাওয়া যাবে।
- দূরত্বকে সময় দিয়ে ভাগ করে ঐ সময় ব্যবধানের জন্য বা ঐ দূরত্বের জন্য গড় দুতি পাওয়া যাবে।
- ৭. এখন একটি ছক কাগজে X –অক্ষের দিকে সময় (t) এবং Y –অক্ষের দিকে দূরত্ব (d) স্থাপন করে একটি লেখচিত্র অজ্জন কর।
- ৮. লেখচিত্র থেকে যেকোনো সময়ে অতিক্রান্ত দূরত্ব এবং এই সময় ব্যবধানের গড় দ্রুতি এবং ঐ মুহূর্তের তাৎক্ষণিক দ্রুতি নির্ণয় কর।
- বিভিন্ন দ্র্তিতে হেঁটে এবং দৌড়ে এই পরীক্ষণটির পুনরাবৃত্তি কর।
- ১০. এইভাবে প্রত্যেক শিক্ষার্থী পরীক্ষণটি সম্পন্ন কর।

অনুসন্ধানের ছক

পাঠ	অতিক্রান্ত দূরত্ব (m)	সময় (s)	গড় দুতি = দূরত্ব (m s ⁻¹)
1			
2			
3			
4			

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উন্তরটির পাশে টিক $(\sqrt{})$ চিহ্ন দাও

বরণের একক কোনটি?

(ক) m s⁻¹

(খ) m s⁻²

(গ) Ns

(ঘ) kg s⁻²

২। ঘড়ির কাঁটার গতি কী রকম গতি ?

(ক) রৈখিক গতি

(খ) উপবৃত্তাকার গতি

(গ) পর্যায়বৃত্ত গতি

(ঘ) স্পন্দন গতি

৩। স্থির অবস্থান থেকে বিনা বাধায় পড়ন্ত বস্তু নির্দিষ্ট সময়ে যে দূরত্ব অতিক্রম করে তা ঐ সময়ের–

(ক) সমানুপাতিক

(খ) বর্গের সমানুপাতিক

(গ) ব্যস্তানুপাতিক

(ঘ) বর্গের ব্যস্তানুপাতিক

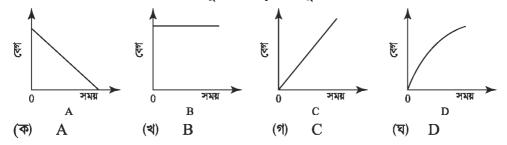
৪। একটি বস্তু স্থার অবস্থান থেকে a সমত্বরণে চলছে। নির্দিষ্ট সময়ে এই বস্তুর অতিক্রান্ত দূরত্ব হবে -

(i)
$$s = \frac{(u+v)}{2}$$

(i)
$$s = \frac{(u+v)}{2}t$$
 (ii) $s = ut + \frac{1}{2}at^2$ (iii) $s^2 = u + 2a$

(iii)
$$s^2 = u + 2a$$

নিচের কোনটি সঠিক?


(ক) i

(খ) ii

(গ) ii ও iii

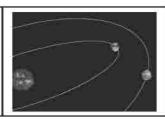
(ঘ) i, ii ও iii

৫। নিচের বেগ-সময় লেখচিত্রের কোনটি মুক্তভাবে পড়ন্ত বস্তুর লেখচিত্র নির্দেশ করে?

খ. সৃজনশীল প্রশ্ন

১। রাজীবরা সপরিবারে সিলেটের জাফলং বেড়াতে যাবার জন্য একটি মাইক্রোবাসে রওনা হলো। সে যাত্রার শুরু থেকে সিলেট যাওয়া পর্যন্ত প্রতি 5 min পরপর গাড়ির স্পিডোমিটার থেকে বেগের মান তথা দ্রুতি লিখে নিল। বেগের মান পেল যথাক্রমে প্রতি ঘন্টায় 18,36,54,54,54,36 ও 18 কিলোমিটার।

(ক) তাৎক্ষণিক দুতি কী ?


(খ) বৃত্তাকার পথে গতিশীল কোনো বস্তুর ত্বরণ ব্যাখ্যা কর ।

(গ) প্রথম ৫ মিনিটে গাড়িটির অতিক্রান্ত দূরত্ব নির্ণয় কর।

(ঘ) সংগৃহীত উপাত্ত দিয়ে বেগ–সময় লেখচিত্র অজ্ঞন করে তা ব্যাখ্যা কর ?

তৃতীয় অধ্যায় বৃল FORCE

স্যার আইজাক নিউটন কম্তুর গতি নিয়ে ব্যাপক গবেষণা করেন। তিনি গতির মৌলিক নীতিগুলোকে তিনটি সূত্রের মাধ্যমে প্রকাশ করেন। এ অধ্যায়ে আমরা গতি বিষয়ক এই সূত্রগুলো আলোচনা করব। এ ছাড়াও বস্তুর জড়তা, বল, বলের প্রকৃতি, ভরবেগ, ঘর্ষণ ও নিরাপদ ভ্রমণ নিয়ে এ অধ্যায়ে আলোচিত হবে।

এই অধ্যার পাঠ শেবে আমরা –

- বস্তুর জড়তা ও বলের গুণগত ধারণা নিউটনের গতির প্রথম সূত্র ব্যবহার করে ব্যাখ্যা করতে পারব।
- বিভিন্ন প্রকার বলের প্রকৃতি ব্যাখ্যা করতে পারব।
- সাম্য ও অসাম্য বলের প্রভাব ব্যাখ্যা করতে পারব।
- ভরবেগ ব্যাখ্যা করতে পারব।
- পতি এবং কস্তুর আকারের উপর বলের প্রভাব বিশ্লেষণ করতে পারব।
- ৬. নিউটনের গতির দিতীয় সূত্র ব্যবহার করে বল পরিমাপ করতে পারব।
- ৭. নিউটনের গতির তৃতীয় সূত্র ব্যবহার করে ক্রিয়া ও প্রতিক্রিয়া বন্দ ব্যাখ্যা করতে পারব।
- নিরাপদ ভ্রমণে গতি এবং বলের প্রভাব বিশ্লেষণ করতে পারব।
- ভরবেপের সংরক্ষণ সূত্র ও সংঘর্ষ ব্যাখ্যা করতে পারব।
- ১০. বিভিন্ন প্রকার মর্বণ এবং মর্বণ বল ব্যাখ্যা করতে পারব।
- ১১. বস্তুর গতির উপর ঘর্ষণের প্রভাব বিশ্লেষণ করতে পারব।
- ১২. ঘর্ষণ হ্রাস–বৃশ্বি করার উপায় ব্যাখ্যা করতে পারব।
- ১৩. আমাদের জীবনে ঘর্ষণের ইতিবাচক প্রভাব বিশ্লেষণ করতে পারব।

৪৮

৩.১ চ্চড়তা এবং বলের গুণগত ধারণা– নিউটনের প্রথম সূত্র

Inertia and qualitative concept of force- Newton's first law

আমরা আমাদের চারপাশে নানা ধরনের বস্তু দেখতে পাই। এদের কোনোটি স্থির, আবার কোনোটি গতিশীল। স্থিতি, গতি, সরণ, বেগ, ত্বরণ ইত্যাদি সম্পর্কে আমরা ইতোমধ্যেই জেনেছি। স্থির বস্তুগুলোর মধ্যে রয়েছে চেয়ার, টেবিল, ঘরবাড়ি, কাঠের গুঁড়ি ইত্যাদি। আবার গতিশীল বস্তুগুলোর মধ্যে রয়েছে চলন্ত রিকশা, বাস, সাইকেল, পতনশীল বস্তু ইত্যাদি। স্থির বস্তুগুলো কি নিজে থেকে নিজেদের গতিশীল করতে পারে? আজ রাতে তোমার পড়ার টেবিলকে যেখানে দেখতে পেলে আগামীকাল সকালে এটি কি সেখানে থাকবে? এসব বাস্তব অভিজ্ঞতা থেকে আমরা কী দেখতে পাই? আমরা দেখি, যে বস্তুগুলো স্থির ছিল সেগুলো স্থিরই রয়েছে। এগুলো নিজে থেকে গতিশীল হতে পারে না। আবার ধর, তোমার এক বন্ধু সমতল রাস্তায় সাইকেল চালিয়ে যাচছে। কোনো এক সময় সে সাইকেলে প্যাডেল দেওয়া কন্ধ করে দিল। সাইকেলটি কি সজো সজো থেমে যাবে? আমরা দেখতে পাই সাইকেলটি কিছু পথ চলার পর আস্তে আস্তে থেমে যায়। যদি বায়ুর বাধা এবং রাস্তার ঘর্ষণ না থাকত তাহলে সাইকেলটি কি অবিরাম গতিতে চলতে থাকত?

এ সকল ঘটনা থেকে আমরা বুঝতে পারি, প্রত্যেক বস্তুই যে অবস্থায় আছে, সেই অবস্থায়ই থাকতে চায়। কোনো বস্তু যদি স্থির থাকে, তবে এটি স্থিরই থাকতে চায়। আবার বস্তু গতিশীল থাকলে এটি গতিশীল থাকতে চায়। বস্তুর নিজস্ব অবস্থা বজায় রাখতে চাওয়ার যে প্রবণতা বা ধর্ম তাই হলো জড়তা। সূতরাং বস্তু যে অবস্থায় আছে চিরকাল সে অবস্থায় থাকতে চাওয়ার যে প্রবণতা বা সে অবস্থা বজায় রাখতে চাওয়ার যে ধর্ম তাকে জড়তা বলে।

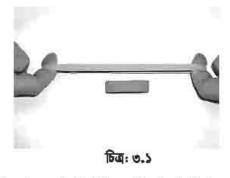
কোনো বস্তুর জড়তা এর ভরের উপর নির্ভর করে। অর্থাৎ ভর হচ্ছে এর জড়তার পরিমাপ। যে বস্তুর ভর বেশি তার জড়তা বেশি। অন্যভাবে বলা যায়, যে বস্তুর জড়তা বেশি তাকে গতিশীল করা, বেগ হ্রাস বা বৃদ্ধি করা কিংবা বেগের দিক পরিবর্তন করা তত কঠিন।

নিছে কর

- একটি কলম ও একটি বই টেবিলের উপর রাখ। এবার কলমটিকে হাতের আঙ্গুল দিয়ে টোকা
 দাও। কী দেখতে পেলে? কলমটি টেবিলের উপর খানিকটা দূরে সরে গেল।
- এবার বইটিকে আগের মতোই আঙ্ল দিয়ে টোকা দাও। বইটি আদৌ সরছে না। এবার বইটিকে
 হাত দিয়ে ধাক্কা দাও। এখন বইটি এক স্থান থেকে অন্য স্থানে সরে যাবে।

কলম ও বইয়ের মধ্যে বইকে সরাতে বেশি চেন্টা করতে হয়েছে কারণ, কলমের চেয়ে বইয়ের ভর বেশি অর্থাৎ জড়তা বেশি।

ব্দুড়তার উদাহরণ


থেমে থাকা বাস হঠাৎ চলতে শুরু করলে বাসযাত্রী পেছনের দিকে হেলে পড়েন। এর কারণ হলো স্থিতি জড়তা। বাস যখন স্থির অবস্থায় থাকে তখন যাত্রীর শরীরও স্থির থাকে। কিন্তু বাস চলতে আরম্ভ করলে যাত্রীর শরীরের বাস

সকলা অংশ গতিশীল হয়। কিশ্তু শরীরের উপরের অংশ স্থিতি জড়তার জন্য স্থির অকথার থাকতে চায়। তাই শরীরের নিচের অংশ সাপেন্দে উপরের অংশ পিছিয়ে পড়ে। যার ফলে যাত্রী পেছনের দিকে হেলে পড়েন। আবার চলন্ত বাসে হঠাৎ ব্রেক করলে যাত্রীরা সামনের দিকে বাঁকে পড়েন। বাস যখন চলন্ত অকথায় থাকে, তখন বাসের যাত্রীও বাসের সাথে একই গতিপ্রাণত হয়। বাস হঠাৎ থেমে গেলে বাসের সাথে সাথে যাত্রীর শরীরের নিচের অংশ স্থির হয়। কিশ্তু বাস্যাত্রীর শরীরের উপরের অংশ গতি জড়তার জন্য সামনের দিকে এগিয়ে যায়।

গাড়ি চাগানোর সময় গাড়ির চাগকগণ নিরাপন্তার কারণে সিটকেট বাঁথেন। এর কারণ কী ? এর মূলে ররেছে জড়তা। যদি তিনি সিটকেট ব্যবহার না করেন, তবে দূত ব্রেক কষার কারণে গতি জড়তার জন্য সামনের দিকে বুঁকে পড়বেন। এর ফলে তিনি তার সামনে গাড়ির সিটয়ারিংসহ অন্যান্য কম্ভূতে সজোরে আঘাত করবেন, ফলে মারাআক দুর্ঘটনা ঘটতে পারে। শুধু চালক নন, যে সকল গাড়িতে সিট বেল্টের ব্যবস্থা আছে সেই সকল গাড়ির যাত্রীদেরও সিট কেট বাঁথা উচিত।

বল

আমাদের দৈনন্দিন অভিজ্ঞতা থেকে বল সম্পর্কে একটি সাধারণ ধারণা আছে। আমরা যখন কোনো কস্তুকে টানি বা ঠেলি, তখন আমরা বলি যে কস্তুটিতে বল প্রয়োগ করা হরেছে। এই প্রযুক্ত বল স্থির কস্তুকে গভিশীল করতে পারে, আবার পতি সৃষ্টির চেকটাও করতে পারে। আবার কস্তুটি যদি গভিশীল অবস্থায় থাকে, ভাহলে প্রযুক্ত বল কস্তুটিকে থামাতে পারে বা বেগ বৃন্ধির চেকটা করতে পারে। অর্থাৎ কোনো বল বস্তুতে ত্বরণ সৃষ্টি করতে পারে। বল কোনো কস্তুকে

বিকৃতও করতে পারে অর্থাৎ আকারের পরিবর্তন করতে পারে। আমরা যখন কোনো রাবারের টুকরা বা স্প্রিয়ের দুইপ্রান্ত ধরে বল প্রয়োগ করি তথন তা বিকৃত হয়ে প্রসারিত বা সংক্**চিত হয়**।

এখন আমরা দেখব নিউটনের প্রথম সূত্র থেকে কীভাবে জড়তা ও বল সম্পর্কে ধারণা লাভ করা যায়। নিউটনের গভি বিষয়ক প্রথম সূত্রটি হলো–

'বাহ্যিক কোনো বল প্রয়োগ না করলে স্থির বস্তু স্থির থাকবে এবং গতিশীল বস্তু সুধম দুভিতে সরলপথে চলতে থাকবে।'

নিউটনের প্রথম সূত্রটি পদার্থের জড়তা ধর্মকে প্রকাশ করে এবং বলের সংজ্ঞা প্রদান করে।

নিউটনের প্রথম সূত্র থেকে দেখতে গাই যে, কোনো বস্তু নিচ্ছে থেকে তার অবস্থার পরিবর্তন ঘটাতে পারে না। বস্তু স্থির থাকলে চিরকাল স্থির থাকতে চায়, আর গতিশীল থাকলে চিরকাল সূষম দুভিতে সরলগথে চলতে চায়। বস্তুর এ ধর্মই হলো জড়তা। অর্থাৎ নিউটনের প্রথম সূত্র থেকে জড়তার ধারণা পাধয়া যায়।

আবার নিউটনের প্রথম সূত্র থেকে জ্ঞানা যায় যে, বস্তুর অবস্থার পরিবর্তন ঘটাতে হলে বাইরে থেকে একটা কিছু প্রয়োগ করতে হবে। অর্থাৎ যা বস্তুর অবস্থার পরিবর্তন করতে বাধ্য করে বা করতে চায় তাই হচ্ছে বল। তাই নিউটনের প্রথম সূত্র থেকে বলের গুণগত সংজ্ঞা পাওয়া যায়। নিউটনের প্রথম সূত্রানুসারে যা স্থির বস্তুর উপর ক্রিয়া করে তাকে গতিলীল করে বা করার চেন্টা করে বা যা গতিলীল বস্তুর উপর ক্রিয়া করে তার গতির পরিবর্তন করে বা করার চেন্টা করে তাকে বল বলে।

৩.২ বলের প্রকৃতি

Nature of force

ज्लार्भ वन :

দৈনন্দিন জীবনে বিভিন্ন ধরনের বলের সজো আমাদের পরিচয় ঘটে। এদের প্রকৃতিও বিভিন্ন ধরনের। এদের কোনোটি দুইটি কম্তুর প্রত্যক্ষ সংস্পর্শের ফলে সৃষ্টি হয়। আবার এমন কতকগুলো বল রয়েছে যেখানে দুইটি বস্তুর প্রত্যক্ষ সংস্পর্শের প্রয়োজন নেই। যে বল সৃষ্টির জন্য দুইটি বস্তুর প্রত্যক্ষ সংস্পর্শের প্রয়োজন তাকে স্পর্শ বল বলে। যখন আমরা হাত দিয়ে কোনো কম্তুকে ঠেলি বা টানি তখন আমাদের হাত কম্তুর উপর একটি বল প্রয়োগ করে। এই ঠেলা বা টানা বল হচ্ছে স্পর্শ বল। কেননা হাত ও কম্তুর প্রত্যক্ষ সংস্পর্শের ফলগুতি হচ্ছে এ বল। স্পর্শ বলের উদাহরণ হলো— ঘর্ষণ বল, টান বল এবং সংঘর্ষের সময় সৃষ্ট বল।

আমরা জানি, একটি বস্তু যখন অন্য একটি বস্তুর উপর দিয়ে চলতে চেন্টা করে বা চলতে থাকে তখন বস্তুদ্বরের স্পর্শতলে গতির বিরুদ্ধে বাধাদানকারী ঘর্ষণ বলের সৃষ্টি হয়। এখানে দুইটি বস্তুর তলের মধ্যে প্রত্যক্ষ সংস্পর্শের ফলে ঘর্ষণ বলের উদ্ভব হয়। মেঝের উপর দিয়ে একটি বক্সকে টেনে নেওয়ার সময় আমরা টান বল প্রয়োগ করি। বক্সের গতির বিপরীত দিকে তখন ঘর্ষণ বলের সৃষ্টি হয়।

जञ्भर्भ वन :

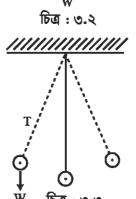
দুইটি বস্তুর প্রত্যক্ষ সংস্পর্শ ছাড়াই যে বল ক্রিয়া করে তাকে অস্পর্শ বল বলে। যেমন দুইটি বস্তুর মধ্যে ক্রিয়াশীল আকর্ষণমূলক মহাকর্ষ বল, দুইটি আহিত বস্তুর মধ্যে ক্রিয়াশীল আকর্ষণ বা বিকর্ষণকারী তড়িৎ বল, দুইটি চুস্বকের মেরুর মধ্যে আকর্ষণ বা বিকর্ষণমূলক বল অথবা একটি চুস্বক ও একটি চৌস্বক পদার্থের মধ্যে ক্রিয়াশীল আকর্ষণ বল হলো অস্পর্শ বল তথা দূরবর্তী বলের উদাহরণ।

নিচ্ছে কর : তুমি হাত থেকে কলম বা পেন্সিল বা অন্য যেকোনো একটি বস্তু ছেড়ে দাও ।

বস্তুটি নিচের দিকে পড়বে। কেউ নিশ্চয়ই বস্তুটিকে নিচের দিকে টানছে। কে টানছে ? পৃথিবী বস্তুটিকে তার দিকে টানছে , যদিও বস্তু ও পৃথিবীর মধ্যে সরাসরি কোনো সংযোগ নেই অর্থাৎ পৃথিবী বস্তুটিকে স্পর্শ করে নাই। পৃথিবী বস্তুর উপর মহাকর্ষ বল প্রয়োগ করছে। এখানে মহাকর্ষ বল হচ্ছে অস্পর্শ বল। মহাবিশ্বের যেকোনো দুইটি বস্তু পরস্পরের উপর মহাকর্ষ বল প্রয়োগ করে থাকে। অবশ্য পৃথিবী যখন কোনো বস্তুর উপর মহাকর্ষ বল প্রয়োগ করে তখন তাকে অভিকর্ষ বল বলা হয়ে থাকে।

৩.৩ সাম্য ও অসাম্য বল

Balanced and unbalanced forces


কোনো বস্তুর উপর একাধিক বল ক্রিয়া করলে যদি বলের লন্দি শূন্য হয় অর্থাৎ বস্তুর কোনো ত্বরণ না হয়, তখন আমরা বলি কম্তুটি সাম্যাকস্বায় আছে। যে কলগুলো এই সাম্যাকস্বা সৃষ্টি করে তাদেরকে সাম্য বল বলে।

এখন কতুর উপর পৃথিবীর আকর্ষণ বল তথা কতুর ওজন 🌃 খাড়া নিচের দিকে ব্রিয়া করছে। আবার সুতার টান T খাড়া উপরের দিকে ব্রিমা করছে। এখানে বল দুইটি সমান ও বিগরীতমুখী হওয়ায় একে অপরের ক্রিয়াকে নিষ্ক্রিয় করে দিয়ে সাম্যাক্সার সৃষ্টি করেছে।

যদি উপরিউক্ত চিত্রে সূতা কেটে দেওয়া হয় তাহদে বস্তুর উপর কেবলমাত্র পৃথিবীর আকর্ষণ তথা অভিকর্ষ বল ক্রিয়া করবে। ফলে বস্তুটি অভিকর্ষ ত্বরণ সহকারে নিচের দিকে পড়তে থাকবে। এখানে অভিকর্ষ কা বা কম্পুর ওঞ্জন হচ্ছে অসাম্য কা।

ওজন W একই সরল রেখায় থাকবে না। ফলে সাম্যাবস্থার সৃষ্টি না হয়ে বস্তুটির উপর একটি দব্দি বদ কাব্দ করবে। এর ফলে বস্তুটি দূলতে থাকবে। এটা অসাম্য বলের একটি উদাহরণ।

সাম্য ও অসাম্য বলের অন্য উদাহরণ তোমরা রশি টানাটানি প্রতিযোগিতায় দেখে থাকতে পার। এই প্রতিযোগিতায় রশির মাঝখানে একটি রুমাল বাধা থাকে। প্রতিযোগিতার সময় সমান সম্ব্যক প্রতিযোগী রশির দুই প্রান্ত ধরে তাদের দিকে রশিটিকে টেনে ব্রুমালটিকে তাদের দিকে

M

সরাতে চেম্টা করে। রুমালটি যদি কোনো দিকে না সরে তা হলে কুঝা যায় দুই দলই সমান কা প্রয়োগ করেছে ফলে রশিটি তথা

রুমালটি সাম্যকস্থায় আছে। এখানে দুই দলের প্রদন্ত কল হলো সাম্য বল।

আর যদি কোনো একদল বেশি কা প্রয়োগ করতে পারে, তাহলে লব্দি বল তাদের দিকে ক্রিয়া করে অসাম্য বলের সৃষ্টি করবে এবং রুমালটি তাদের দিকে সরে যাবে। ফলে প্রতিযোগিতায় তারা বিজয়ী ঘোষিত হবে।

চিত্র : ৩.৫

৩.৪ ভরবেগ

Momentum

গতিশীল বস্তুর ভর ও বেগের সমন্বয়ে যে ভৌত রাশির উদ্ভব হয় তা হলো ঐ বস্তুর ভরবেগ। ভরবেগ বস্তুর ভর এবং বেগের উপর নির্ভরশীল। মালবাহী একটি ট্রাক এবং একটি প্রাইভেট গাড়ির কথা চিন্তা কর। মনে কর, দুইটি গাড়িই সমদ্র্তিতে একটি নিদিফ্ট দিকে গতিশীল। গাড়ি দুইটিকে একই দূরত্বের মধ্যে থামাতে হবে। কোন গাড়িটিকে থামাতে শক্তিশালী ব্রেক প্রয়োগ করতে হবে? ট্রাককে। কারণ ট্রাক এবং গাড়ি একই দ্রুতিতে গতিশীল থাকা সত্ত্বেও ট্রাক যে ভৌত রাশি বেশি ধারণ করে তা হলো এর ভরবেগ।

কোনো গতিশীল বস্তুকে থামানো কত কফসাধ্য বা কঠিন ভরবেগ হচ্ছে তার একটি পরিমাপ। ভরবেগ বলের সঞ্চো সম্পর্কিত। নিউটনের দ্বিতীয় সূত্রে এ সম্পর্কটি পরিমাণগতভাবে পাওয়া যায়।

কোনো বস্তুর ভর ও বেগের গুণফলকে এর ভরবেগ বলে।

ধরি, একটি ক্স্তুর ভর = m

বেগ = ν

$$\therefore$$
 ভরবেগ $p = mv$ (3.1)

ভরবেগ একটি ভেক্টর রাশি। এর দিক বেগের দিকে।

সমীকরণ (3.1) থেকে দেখা যায়, কোনো বস্তুর ভর যত বেশি হবে এবং বস্তু যত দ্রুত চলবে তার ভরবেগও তত বেশি হবে।

একক: ভরবেগের একক হলো, ভরের একক imes বেগের একক অর্থাৎ $kg imes ms^{-1}$ বা $kg \; ms^{-1}$ ।

 $1~{
m kg}$ ভরের কোনো বস্তু $1{
m ms}^{-1}$ বেগে চললে এর ভরবেগ হবে $1{
m kg~ms}^{-1}$

ভরবেগের মাত্রা : $[p] = MLT^{-1}$

৩.৫ বস্তুর গতির এবং আকারের উপর বলের প্রভাব

Effect of force on motion and shape of a body

প্রযুক্ত বল কোনো স্থির বস্তুকে গতিশীল করতে পারে

যখন কোনো খেলোয়াড় স্থির ফুটবলকে কিক করেন তখন কী ঘটে? দেখা যায় যে, ফুটবলটি স্থির অবস্থা থেকে যে দিকে ফুটবলটিকে কিক করা হয়েছে সে দিকে গতিশীল হয়। অর্থাৎ এক্ষেত্রে ফুটবলটি স্থির অবস্থা থেকে ত্বরণ লাভ করে। এক্ষেত্রে সৃষ্ট ত্বরণের মান ধনাত্বক এবং ত্বরণের দিক হলো কিকের মাধ্যমে যে দিকে বল প্রয়োগ করা হয় সেই দিকে।

প্রযুক্ত বল গতিশীল বস্তুর বেগ বৃদ্ধি করতে পারে

নিচ্ছে করি: একটি গড়ানো মার্বেলকে মার্বেলটি যে দিকে গড়িয়ে যাচ্ছে সে দিক বরাবর টোকা দাও। কী দেখতে পেলে?

মার্বেলটি আরও বেশি দুত পড়াতে শাপন। এক্ষেত্রে মার্বেলটির গতি বৃশ্বি পেরেছে অর্থাৎ মার্বেলটির ধনাত্রক ত্রব হয়েছে।

ব্দ প্রয়োগের কলে গভিশীল বস্কুর বেলাব্রাস পায়

এবার ধরো, ভোষার কন্মু রিক্লার ভোষার সামনে দিরে যাকে। ডাকে দেখতে গেরে ভূমি রিক্লা টেনে ধরলে। ডা হলে রিক্লার গতি মন্ধর হবে অর্থাৎ কা প্রয়োগে গতিশীন রিক্লার কো কমে গেল।

গ্রমুক্ত বল কোনো গতিশীল বস্তুর বেগের দিক গরিবর্তন করতে পারে

ক্রিকেট খেলায় একজন খেলোরাড় বিশরীত দিক থেকে দালত ক্রিকেট কাকে ব্যাট হারা দাখাত করেন। ব্যাট হারা দাহাতের ফলে কাটির বেপের মান ও দিক উভরেই শরিবর্জিত হর। যে দিক থেকে কাটি দালছিল ব্যাট হারা সাধাতের কলে এটি দান্য কোনো দিকে শতিশীল হর। এক্ষেত্রেও ক্রিকেট কাটির স্কুরণ হরেছে।

কুকুর আকারের উপর বলের প্রভাব

আমাদের চারপাশে এমন অনেক উদাহরণ ররেছে বেখানে বলের ক্রিরায় কস্কুর আকারের পরিবর্তন হয়। একটি খালি গ্লান্টিকের পানির বোভল চেপে ধরলে বোভলের আকারের পরিবর্তন হয়। আবার বর্ধন কোনো রাবার ব্যান্ডকে টেনে প্রসারিত করা হয়। তথন এটি সরু হয়ে বার অর্থাৎ এর আকারের পরিবর্তন হয়।

ভ.ত । ছবী

ক্রনো ক্রনো বলের বিয়ার কন্তুর এই আকার পরিবর্তন

ক্ষণস্বায়ী হয়। স্বাধায় ক্রনো কা প্রয়োগের ফলে স্বায়ীভাবে ক্স্তুর স্বাকারের গরিবর্তন সংঘটিত হয়। উদাহরণ হিসেবে দুমড়ে–মূচড়ে বাভয়া ধাতব ক্যান স্বধা দুর্ঘটনার পরে কোনো গাড়ির ক্ষেত্রে এ ধরনের পরিবর্তন ঘটে।

৩.৬ বল এবং ছুরণের সম্পর্ক –নিউটনের বিভীয় সূত্র

Relation between force and acceleration-Newton's second law
নিউটনের প্রথম সূত্র বলের পূণণত ধারণা দেয়। নিউটনের বিতীয় সূত্র বল পরিমাণের সমীকরণ প্রদান করে।
নিউটনের বিতীয় সূত্র থেকে কম্পুর উপর ক্রিয়াশীল বল একং এর কালে সূত্র স্থাপের মধ্যে সম্পর্ক জানা যায়। সূত্রটি
নিমুত্রণ:

কস্তুর তরবেশের পরিবর্ত্তদের হার এর উপর প্রকুক্ত বলের সমানুশান্তিক একং কা থেদিকে ক্রিরা করে কস্তুর তরবেশের পরিকর্তনত সেদিকে ষটে।

ধরা বাক, m ভরবিশিক্ট একটি কম্পু u ভালিবেশে চলছে। এখন F গ্রুব কল কম্পুর উপর t সময় ধরে কেপের ভতিমূখে জিয়া করলো। ধরা যাক, বল প্রয়োগের কলে কম্পুর কো u হতে পরিবর্তিত হয়ে v হলো।

- 🚊 কম্ভুটির আদি ভরবেশ = 🚌 🛭
- ় বস্কুটির শেষ ভরবেগ = mv
- t সময়ে বস্তুর ভরবেশের পরিবর্তন = mv mu

সুতরাং, বস্তুর ভরবেগের পরিবর্তনের হার $= \frac{mv - mu}{t}$

$$= ma$$
 \therefore ত্ব্বণ, $a = \frac{v - u}{t}$

নিউটনের গতির দ্বিতীয় সূত্রানুসারে, বস্তুর ভরবেগের পরিবর্তনের হার প্রযুক্ত বলের সমানুপাতিক অর্থাৎ, $ma \propto F$

$$=kF \tag{3.2}$$

এখানে k একটি সমানুপাতিক ধ্রুবক। এর মান বলের এককের উপর নির্ভর করে। এ সমীকরণ থেকে বলের এককের সংজ্ঞা দেওয়া হয়। বলের একককে বলা হয় নিউটন (N)। এ এককের সংজ্ঞা এমনভাবে দেওয়া হয় যাতে k=1 হয়। যখন $m=1 {
m kg}$, $a=1 {
m ms}^{-2}$

তখন F=1N ধরা হয় ফলে উপরিউক্ত (3.2) সমীকরণে $1\times 1=k\times 1$ বা k=1 হয়।

সুতরাং ভর m কে kg, ত্বরণ a কে ms^{-2} এবং বল F কে N -দারা প্রকাশ করলে সমীকরণ (3.2) থেকে পাওয়া যায়—

$$ma = 1.F$$

বা $F = ma$ (3.3)
বা বল = ভর \times ত্বরণ

বলের মাত্রা : $[F] = MLT^{-2}$ ।

গাণিতিক উদাহরণ ৩.১: $50 \ \mathrm{kg}$ ভরের একটি বস্তুর উপর কত বল প্রয়োগ করা হলে এর ত্বরণ $4 \ \mathrm{ms}^{-2}$ হবে ? আমরা জানি

$$F = ma$$

= 50 kg × 4 ms⁻²
= 200 kg ms⁻²
= 200 N
উত্তর: 200 N

বস্তুর ভর, m = 50 kgত্বরণ, $a = 4 \text{ ms}^{-2}$ বল, F = ?

গাণিতিক উদাহরণ ৩.২: একটি বালক 50 N বল দ্বারা 20 kg ভরের একটি বক্সকে ধাকা দেয়। বক্সটির ত্বরণ কত হবে?

আমরা জানি
$$F = ma$$

$$a = \frac{F}{m}$$

$$= \frac{50N}{20kg}$$

$$= 2.5 \text{ ms}^{-2}$$
উত্তর: 2.5 ms^{-2}

এখানে,
বজের ভর,
$$m=20~{
m kg}$$

প্রযুক্ত বল, $F=50~{
m N}$
বজের ত্বনণ, $a=?$

৩.৭ ক্রিয়া ও প্রতিক্রিয়া বল– নিউটনের তৃতীয় সূত্র

Action and reaction force- Newton's third law

বলের একটি বৈশিষ্ট্য হচ্ছে প্রকৃতিতে বল জোড়ায় জোড়ায় ক্রিয়া করে। যখনই কোনো বস্তুর উপর একটি বল প্রযুক্ত হয়, তখনই একটি সমমানের এবং বিপরীতমুখী বল খন্য একটি বস্তুর উপর ক্রিয়া করে। এই বিষয়টিকে সাধারণত এভাবে বলা হয়—

প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীত প্রতিক্রিয়া আছে।

এটি নিউটনের গতির তৃতীয় সূত্র হিসেবে পরিচিত।

অর্থাৎ নিউটনের তৃতীয় সূত্রানুসারে ক্রিয়া বল ও প্রতিক্রিয়া বলের মান সমান কিশ্চু এদের দিক বিপরীতমুখী। ৩.৭ চিত্রে P বস্তৃটি যদি Q বস্তৃটির উপর F_I বল প্রয়োগ করে, তখন সূত্রানুসারে Q বস্তৃটিও P বস্তূর উপর সমান ও বিপরীতমুখী বল F_2 প্রয়োগ করবে। এখানে P বস্তৃ কর্তৃক Q বস্তৃর উপর প্রযুক্ত বলকে ক্রিয়া বল এবং Q বস্তৃ কর্তৃক P বস্তুর উপর প্রযুক্ত বলকে প্রতিক্রিয়া বল বলে।

সুতরাং, নিউটনের তৃতীয় সূত্রানুসারে, $F_2 = -F_1$

শক্ষণীয় যে, ক্রিয়াবল এবং প্রতিক্রিয়া বল সব সময়ই দুইটি ভিন্ন বস্তুর উপর ক্রিয়া করে। প্রতিক্রিয়া বলটি ততক্ষণই থাকবে যতক্ষণ পর্যন্ত ক্রিয়াবলটি থাকবে।

উদাহরণ :

মাটির উপর হাঁটা

দৈনন্দিন জীবনে আমরা মাটির উপর দিয়ে হাঁটি বা দৌড়াই [চিত্র ৩.৮]। আমরা যখন মাটির উপর দিয়ে হাঁটি তখন পেছনের পা দারা মাটির উপর পেছনের দিকে তির্বকভাবে একটি বল প্রয়োগ করি। এ বল হলো ব্রুয়া বল। তৃতীয় সূত্র অনুযায়ী এই বলের বিপরীতে একটি প্রতিক্রিয়া বল সৃষ্টি হয় এই প্রতিক্রিয়া বলের প্রভাবে আমরা রাস্তার উপর দিয়ে হাঁটতে সক্রম হই।

৩.৮ ভরবেগের সংরক্ষণ সূত্র ও সংঘর্ষ :

Conservation law of momentum and collision

একাধিক বস্তুর মধ্যে শুধু ব্রিয়া ও প্রতিক্রিয়া ছাড়া অন্যকোনো বল কান্ধ না করলে কোনো নির্দিষ্ট দিকে তাদের মোট ভরবেগের কোনো পরিবর্তন হয় না। এটি হচ্ছে, ভরবেগের সংরক্ষণ সূত্র। ভরবেগের সংরক্ষণ সূত্র পদার্থবিজ্ঞানের একটি গুরুত্বপূর্ণ নীতি। এ নীতিকে কান্ধে লাগিয়ে আমরা অনেক ঘটনা ব্যাখ্যা করতে পারি।

তোমরা যারা মার্বেল খেলেছ তারা সম্ভবত দেখতে পেয়েছ কীভাবে একটি মার্বেল অন্য একটি মার্বেলকে আঘাত করে। এছাড়া সংবাদপত্র বা টেলিভিশনের মাধ্যমে তোমরা বিভিন্ন ধরনের সড়ক দুর্ঘটনার খবর জানতে পার। এ ধরনের ঘটনা হলো সংঘর্ষের বাস্তব উদাহরণ।

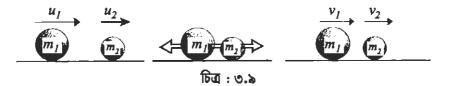
অর্থাৎ যখন একটি গতিশীল বস্তু অন্য একটি স্থির বা গতিশীল বস্তুকে ধাকা দেয়, তখন বস্তু দুইটির মধ্যে সংঘর্ষ হয়েছে বলা হয়। সংঘর্ষের ফলে বস্তু দুইটির প্রত্যেকটির উপর একটি বল ক্রিয়া করে। প্রথম বস্তু কর্তৃক বিতীয় বস্তুর উপর প্রযুক্ত বলকে ক্রিয়া বল বলা হলে বিতীয় বস্তু কর্তৃক প্রথম বস্তুর উপর প্রযুক্ত বলকে প্রতিক্রিয়া বল বলা হয়। সংঘর্ষের সময় ক্রিয়াশীল এই দুইটি বলের মান সমান কিম্তু বিপরীতমুখী। সংঘর্ষের সময় দুইটি বস্তুর মধ্যে ক্রিয়া ও প্রতিক্রিয়া বল ব্যতীত বাহ্যিক কোনো বল কাজ করে না। নিউটনের বিতীয় সূত্র থেকে আমরা পাই

$$F = \frac{mv - mu}{t}$$

এ সমীরণটি থেকে আমরা ভরবেগের পরিবর্তনকে নিমুরূপে প্রকাশ করতে পারি–

 $F \times t = mv - mu \tag{3.4}$

অর্থাৎ


বল ×সময় = ভরবেগের পরিবর্তন।

কিম্তু বল ও সময়ের গুণফলকে বলা হয় বলের ঘাত।

∴ বলের ঘাত = ভরবেগের পরিবর্তন

ধরা যাক m_1 ও m_2 ভরবিশিফ দুইটি বস্তু A ও B যথাক্রমে u_1 এবং u_2 বেগ নিয়ে একই সরল রেখা বরাবর চলছে। A এর বেগা B এর বেগের চেয়ে বেশি হলে কোনো এক সময় A বস্তুটি B বস্তুটিকে ধাকা দিবে [চিত্র ৩.৯]।

B কম্তুর উপর A কম্তুর এ প্রযুক্ত বল হলো ব্রুয়া F_I , B কম্তুটিও A কম্তুটিকে F_2 বল প্রয়োগ করবে এই F_2 বল প্রতানুসারে $F_2=-F_I$

সংঘর্ষের সময় ক্রিয়া ও প্রতিক্রিয়া বল একই সময়ব্যাপী কাজ করে। ধরা যাক, ক্রিয়া ও প্রতিক্রিয়ার সময়কাল t। সংঘর্ষের পর বস্তু দুইটি পরিবর্তিত বেগে একই সরলরেখায় চলতে ধাকবে। ধরা যাক $A \, \otimes B$ এর পরিবর্তিত বেগ যথাক্রমে $v_I \, \otimes \, v_2$ । ক্রিয়া ও প্রতিক্রিয়ার ফলে $A \, \otimes \, B$ বস্তু দুইটির ত্বরণ যথাক্রমে $a_I \, \otimes \, a_2$ হলে,

$$F_{1} = -F_{2}$$

বা, $m_{1}a_{1} = -m_{2}a_{2}$

ৰা,
$$m_1 \frac{v_1 - u_1}{t} = -m_2 \frac{v_2 - u_2}{t}$$

ৰা, $m_1 v_1 - m_1 u_1 = -m_2 v_2 + m_2 u_2$
ৰা, $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$

অতএব, A ও B কম্তু দুইটির সংঘর্ষের পূর্বের ও পরের ভরবেগের সমষ্টি সর্বদা সমান থাকে। এটিই ভরবেগের সংরক্ষণ সূত্র। গাণিতিক উদাহরণ ৩.৩ : $20~{
m kg}$ ভরের একটি কম্তুর উপর $2000~{
m N}~{
m de}$ বল $0.1~{
m s}~{
m y}$ সময়ব্যাপী কাজ করে। কম্তুর ভরবেগের পরিবর্তন কত হবে?

আমরা জানি এখানে, ত্রবেগের পরিবর্তন = বল \times সময় mv - mu = Ft প্রযুক্ত বল, F = 2000 N বলের ক্রিয়া কাল, t = 0.1 s ভরবেগের পরিবর্তন, mv - mu = ? = 200 kg ms^{-1}

উত্তর : ভরবেগের পরিবর্তন = 200 kg ms^{-1}

গাণিতিক উদাহরণ ৩.8: একটি বন্দুক থেকে $500~{
m ms}^{-1}$ বেগে $10~{
m g}$ ভরের একটি গুলি ছোড়া হলো। বন্দুকের ভর $2~{
m kg}$ হলে বন্দুকের পন্চাৎ বেগ নির্ণয় কর।

ধরা যাক গুলির বেগের দিক অর্থাৎ সম্মুখ দিক ধনাত্মক । ভরবেগের সংরক্ষণ সূত্র থেকে আমরা জানি
$$m_1 u_1 + m_2 \ u_2 = m_1 v_1 + m_2 v_2$$
 বা $m_1 \times 0 \ \mathrm{ms}^{-1} + m_2 \ \mathrm{kg} \times 0 \ \mathrm{ms}^{-1} = 10^{-2} \ \mathrm{kg} \times 500 \ \mathrm{ms}^{-1} + 2 \ \mathrm{kg} \times v_2$ বা $v_2 = -\frac{5 \ \mathrm{kg} \ \mathrm{ms}^{-1}}{2 \mathrm{kg}} = -2.5 \ \mathrm{ms}^{-1}$

এখানে বন্দুকের বেগ ঋণাত্মক, অর্থাৎ বন্দুকটি পিছন দিকে গতিশীল হবে। উত্তর : পশ্চাৎ বেগ = $2.5~{
m ms}^{-1}$

গুলির ভর , $m_1 = 10 \text{ g}$ $= 10 \times 10^{-3} \text{ kg}$ $= 10^{-2} \text{ kg}$ কন্দুকের ভর , $m_2 = 2 \text{ kg}$ গুলির আদিবেগ , $u_1 = 0 \text{ ms}^{-1}$ কন্দুকের আদিবেগ , $u_2 = 0 \text{ ms}^{-1}$ গুলির শেষ বেগ , $v_1 = 500 \text{ ms}^{-1}$ কন্দুকের পশ্চাৎ বেগ , $v_2 = ?$

৩.৯ নিরাপদ ভ্রমণ: গতি ও বল

Safe journey: force and motion

নিরাপদ ভ্রমণের জন্য গাড়ির গতি নিয়ন্ত্রণ অত্যন্ত গুরুত্বপূর্ণ বিষয়। আমরা আমাদের দৈনন্দিন প্রয়োজন মেটানোর জন্য গাড়িতে ভ্রমণ করি। ভ্রমণের সময় আমরা বিভিন্ন যানবাহন ব্যবহার করি। কখনো বাসে, কখনো ট্রেনে আবার কখনো বা ব্যক্তিগত যানবাহন ব্যবহার করি। এসব যানবাহনে ভ্রমণের সময় যানবাহনের গতি এবং বল ওতপ্রোতভাবে জড়িত। নিরাপদ ভ্রমণের ক্ষেত্রে গাড়ির গতি মুখ্য ভূমিকা পালন করে। গাড়ির গতি বা বেগ এমন হওয়া উচিত নয় যা

নিয়ন্ত্রণ করা সম্ভব নয়। দূরবর্তী গন্তব্যে ভ্রমণের জন্য প্রথমেই গন্তব্যস্থলে যাওয়ার রাস্তা এবং পরিবেশ সম্পর্কে আগে থেকে জেনে নেওয়া প্রয়োজন।

ভ্রমণ শুরু করার পূর্বেই গাড়ির চালককে তার গাড়ি ভালোভাবে পরীক্ষা করে নিতে হবে। উদাহরণস্বরূপ— গাড়ির টায়ার ও ব্রেক সঠিক আছে কিনা, গাড়ির ইঞ্জিন, ব্যবহৃত ব্যাটারি, সামনের এবং পেছনের বাতিসমূহ, গাড়ির ওয়াইপার এবং দুইপাশের সংকেত দেওয়ার বাতিপুলো সঠিক এবং ভালোভাবে কাজ করছে কিনা তা নিশ্চিত করতে হবে। এছাড়া গাড়িতে ব্যবহৃত দর্পণগুলো সঠিকভাবে উপযোজন করে নিতে হবে।

গাড়ি চালনার সময় প্রথমেই ড্রাইভার এবং আরোহীদের সিট বেল্ট বেঁধে নেওয়া উচিত। দেখা যায় যে, অধিকাংশ সড়ক দুর্ঘটনা খুব দুত গাড়ি চালানোর জন্য ঘটে থাকে। তাই গাড়ির গতি নিয়ন্ত্রণের মধ্যে রাখতে চালককে সচেষ্ট থাকতে হবে। বেগ বৃদ্ধির ফলে ভরবেগ বেশি হয়। যেমন— গাড়ির বেগ দিগুণ হলে এর ভরবেগ পূর্বের তুলনায় দিগুণ হয়। বেগ তিনগুণ হলে এর ভরবেগ তিনগুণ হয়। ফলে গাড়ির বেগ কমানো বা নিয়ন্ত্রণ কঠিন হয়ে পড়ে এবং ভয়াবহ দুর্ঘটনা ঘটে।

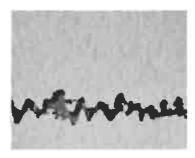
গাড়ির চালক এমন যানবাহন চালাবেন, যেটি চালানোর পূর্ব অভিজ্ঞতা তার রয়েছে। হঠাৎ করে নতুন কোনো যানবাহন চালানোর চেন্টা করা উচিত নয়। দেখা যায় যে, তরুণরা আবেগের বশে নতুন গাড়ি চালাবার চেন্টা করে।এটি মোটেও উচিত নয়। গাড়ি চালানোর সময় যখনই বিপরীত দিক থেকে কোনো গাড়ি আসতে দেখা যাবে তখনই গাড়ির গতি কমিয়ে ফেলতে হবে। ট্রাফিক সাইন এবং ট্রাফিক আইন মেনে চলা গাড়ি চালকের নাগরিক দায়িত্ব। গাড়ি চালনার সময় চালককে তাঁর গাড়ি চালনার দিকে সম্পূর্ণরূপে মনোনিবেশ করতে হবে।

দ্লীয়কাছ : নিরাপদ যানবাহন চালনা কার্যক্রমের উপর একটি পোস্টার অংকন।

৩.১০ ঘর্ষণ ও ঘর্ষণ বল

Friction and force of friction

দৈনন্দিন জীবনে আমরা ঘর্ষণের সজ্গে নানাভাবে পরিচিত। নিউটনের গতির প্রথম সূত্র থেকে আমরা জানি যে, কোনো বস্তুর উপর বল ক্রিয়া না করলে, হয় বস্তুটি স্থির থাকবে, না হয় বস্তুটি সমবেগে সরলপথে চলতে থাকবে। বাস্তবে এমনটি ঘটে কি? তুমি একটি মার্বেল নাও এবং একে মেঝেতে গড়িয়ে দাও। মার্বেলটিকে তুমি যখন গড়িয়ে দাও তখন এর উপর তুমি বল প্রয়োগ কর। যার ফলে মার্বেলটি মাটির উপর দিয়ে গতিশীল হয়। নিউটনের প্রথম সূত্রানুযায়ী মার্বেলটি সমবেগে গতিশীল থাকার কথা। কিন্তু বাস্তবে দেখা যায় যে, মার্বেলটি খানিকটা দূরত্ব অতিক্রম করার পর থেমে যায়। মেঝের ঘর্ষণের জন্যই এমনটি ঘটে। মার্বেলটি যখন মেঝের উপর গতিশীল থাকে, তখন মার্বেল ও মেঝের পারস্পরিক ঘর্ষণের ফলে একটি ঘর্ষণ বলের উৎপত্তি হয়। এ বল গতির বিপরীত দিকে ক্রিয়া করে এবং গতিকে বাধাগ্রস্ত করে। যদি মেঝের ঘর্ষণ না থাকত তাহলে মার্বেলটি একই বেগ নিয়ে অবিরাম গতিতে চলতে থাকত।


একটি বস্তু যখন অন্য একটি বস্তুর সংস্পর্শে থেকে একের উপর দিয়ে অপরটি চলতে চেন্টা করে বা চলতে থাকে তখন বস্তুদ্বয়ের স্পর্শতলে গতির বিরুদ্ধে একটি বাধার উৎপত্তি হয়, এ বাধাকে ঘর্ষণ বলে। আর এই বাধাদানকারী বলকে ঘর্ষণ বল বলা হয়।

ঘর্ষণ বল সর্বদা গতির বিপরীত দিকে ক্রিয়া করে। ঘর্ষণ সবসময় গতিকে বাধা দেয়।

ঘর্বণের উৎপত্তি

যখন একটি বস্তুর তল অপর বস্তুর তলের উপর দিয়ে গতিলীল হয়, তখন প্রত্যেক বস্তু অপর বস্তুর উপর ঘর্ষণ বল প্রয়োগ করে। এখন প্রশ্ন আসে ঘর্ষণ কেন হয় ? ঘর্ষণ হলো যেকোনো দুইটি তলের অনিয়মিত প্রকৃতির ফল। প্রত্যেক বস্তুরই তল আছে। আবার তল মসৃণ অথবা অমসৃণ দুই হতে পারে। আপাত দৃষ্টিতে কোনো বস্তুর তলকে মসৃণ বলে মনে হলেও অনুবীক্ষণ যলেত্রর সাহায্যে দেখলে এর উপর অনেক উঁচু নিচু খাঁজ লক্ষ করা যায় [চিত্র ৩.১০]। যখন একটি বস্তু অন্য একটি বস্তুর উপর দিয়ে গতিলীল হয়, তখন উভয় বস্তুর স্পর্শতলের এ খাঁজগুলো একটির ভিতর আরেকটি ঘুকে যায় অর্থাৎ খাঁজগুলো পরস্পর আটকে যায়। যার ফলে একটি তলের উপর দিয়ে অপর তলের গতি বাধাপ্রান্ত হয়।

কোনো তলের উঁচু নিচু খাঁজ যতবেশি এবং গভীর হবে অর্থাৎ তল যত বেশি অমসৃণ হবে, এক তলের উপর দিয়ে অন্য তলের গতি তত বেশি বাধাগ্রস্ত হবে। ফলে ঘর্ষণ বলের মানও বেড়ে যাবে। স্পর্শতলের এই বাধাকে অতিক্রম করতে পারলে তবেই বস্তুটি গতিশীল থাকে। ঘর্ষণের ফলে বস্তুর গতি হ্রাস পায় এবং অবশেষে থেমে যায়।

०८.७ : क्रवी

ঘর্বপের প্রকারতেদ :

ঘর্ষণ সাধারণত চার প্রকারের হয়–

- ১। স্থিতি ঘর্ষণ (Static friction)
- ২। পিছলানো ঘর্ষণ (Sliding friction)
- ৩। আবর্ত ঘর্ষণ (Rolling friction)
- ৪। প্রবাহী पर्यंग (Fluid friction)

স্থিতি ঘর্ষণ

দুইটি তলের একটি অপরটির সাপেক্ষে গতিলীল না হলে এদের মধ্যে যে ঘর্ষণ সৃষ্টি হয় তা হলো স্পিতি ঘর্ষণ। অর্থাৎ যখন একটি বস্তুর উপর বল প্রয়োগ করা হয়, কিল্তু এ বল বস্তুর গতি সৃষ্টি করতে পারে না তখন স্থিতি ঘর্ষণ কাজ করে। আবার মেঝের উপর অবস্থিত একটি ভারী বস্তুকে টানার পরও গতিলীল না হলে যে ঘর্ষণ বল উৎপন্ন হয় তা হলো স্থিতি ঘর্ষণ বল। অর্থাৎ প্রযুক্ত বলের বিপরীতে স্থিতি ঘর্ষণ বল উৎপন্ন হয় এবং গতি সৃষ্টি না হওয়া পর্যন্ত এ বল কাজ করে।

দুইটি স্থির বস্তু পরস্পরের সংস্পর্শে থাকা অবস্থায় একটিকে অপরটির উপর দিয়ে গতিশীল করার চেন্টা করা হলে এদের মধ্যে আপেক্ষিক গতি সৃষ্টি না হওয়া পর্যন্ত যে ঘর্ষণ বল ক্রিয়া করে তাকে স্থিতি ঘর্ষণ বলে।

পিছলানো ঘর্বণ

যখন একটি বস্তু অন্য একটি বস্তুর তথা তলের উপর দিয়ে পিছলিয়ে (Slide) বা বেষে চলতে চেকটা করে বা চলে তখন যে ঘর্ষণের সৃষ্টি হয় তাকে পিছলানো ঘর্ষণ বলে।

পিচ্ছিল রাস্তায় চলার সময় অনেক সময় আমরা পড়ে যাই এবং পিছলিয়ে অনেকটা দূরত্ব অতিক্রম করি। দূতবেগে গতিশীল কোনো গাড়িতে হার্ড ব্রেক কবলে গাড়িটি না থেমে পিছলিয়ে খানিকটা দূরত্ব অগ্রসর হয়। এগুলো পিছলানো ঘর্ষণের উদাহরণ।

আবর্ত ঘর্ষণ

যখন একটি ক্স্তু অপর একটি তলের উপর দিয়ে গড়িয়ে চলে তখন গতির বিরুদ্ধে যে ঘর্ষণ ব্রুয়া করে তাকে আবর্ত ঘর্ষণ বল বলে।

সাইকেলের চাকার গতি, মার্বেলের গতি হলো আবর্ত ঘর্ষণের উদাহরণ। শুমণের সময় মালামাল পরিবহনের জন্য আমরা চাকা লাগানো লাগেজ ব্যবহার করি। যদি লাগেজে চাকা লাগানো না থাকত তখন এটিকে একস্থান থেকে অন্যুখানে পিছলিয়ে টেনে নিতে বেশ কন্ট হতো। কিম্তু চাকা লাগানোর ফলে লাগেজ টেনে নেওয়া বেশ সহজ্ঞতর হয়। অর্থাৎ আবর্ত ঘর্ষণ বল পিছলানো ঘর্ষণের তুলনায় কম।

প্রবাহী ঘর্ষণ

যখন কোনো বস্তু যেকোনো প্রবাহী পদার্থ যেমন— তরল বা বায়বীয় পদার্থের মধ্যে গতিলীল থাকে তখন যে বর্ষণ ক্রিয়া করে তাকে প্রবাহী বর্ষণ বলে।

যখন পুকুরে সাঁতার কাটা হয় তখন পুকুরের পানির মধ্য দিয়ে একটি বাধাকে অভিক্রম করতে হয়। আর এ বাধাই হলো প্রবাহী ঘর্ষণ। প্যারাসূট বায়ুর বাধাকে কান্ধে লাগিয়ে কান্ধ করে। এখানে বায়ুর বাধা হলো এক ধরনের ঘর্ষণ বল যা পৃথিবীর অভিকর্ম বলের বিপরীতে ক্রিয়া করে। খোলা অবস্থায় প্যারাসূটের বাহিরের তলের ক্ষেত্রফল অনেক বেশি হওয়ায় বায়ুর বাধার পরিমাণও বেশি হয়, যার ফলে আরোহীর পতনের গতি অনেক হ্রাস পায়। ফলে আরোহী ধীরে ধীরে মাটিতে নিরাপদে নেমে আসে।

৩.১১ গতির উপর ঘর্ষণের প্রভাব

Effect of friction on motion

কোনো বস্তুর গতির উপর ঘর্ষণের ব্যাপক প্রভাব রয়েছে। ঘর্ষণ হলো এক ধরনের বাধাদানকারী বল, যা কস্তুর গতিকে মন্থর করে। ঘর্ষণ আমাদের দৈনন্দিন জীবনে অনেক সমস্যা সৃষ্টি করলেও চলাচল ও যানবাহন চালনার জন্য ঘর্ষণ গুরুত্বপূর্ণ ভূমিকা পালন করে। এ অনুচ্ছেদে টায়ারের পৃষ্ঠ, রাস্ভার মসৃণভা এবং গতি নিয়ন্ত্রণে ঘর্ষণের ভূমিকা নিয়ে আলোচনা করা হবে।

টায়ারের পৃষ্ঠ

গাড়ির টায়ার এবং রাস্তার মধ্যবর্তী ঘর্ষণ আছে বলেই গাড়ি চালনা সম্ভব হয়েছে। টায়ার এবং রাস্তার মধ্যবর্তী এ ঘর্ষণ বলের মান নির্ভর করে টায়ারের পৃষ্ঠ এবং রাস্তার তলের বাহ্যিক অবস্থার উপর। এটি গাড়ির ওজনের উপরও নির্ভর করে। গাড়ির টায়ারে রাবারের উপর বিভিন্ন নকশায় দাঁত বা খাঁজ

হৈতে: ছব্ৰ

কাটা থাকে [চিত্র ৩.১১]। এ খাঁজগুলো থাকার ফলে টায়ারের পৃষ্ঠ উঁচু নিচু হয়। টায়ার যখন নতুন থাকে তখন এই উঁচু নিচু খাঁজগুলো সুস্পঊ থাকে বিধায় রাস্তা ও টায়ারের মধ্যবর্তী ঘর্ষণ বল সর্বোচ্চ হয়। অন্যদিকে টায়ার যখন পুরনো হয়ে যায় তখন এর খাঁজগুলো মিলিয়ে যায় এবং টায়ারের পৃষ্ঠ সমতল হয়ে পড়ে। এর ফলে রাস্তা ও টায়ারের ঘর্ষণ বল অনেকটা কমে যায়। এর ফলে কী অসুবিধা হতে পারে বল।

রাস্তার মসৃণতা

বস্তুর গতির উপর রাস্তার মসৃণতার প্রভাব অনেক বেশি। রাস্তা মসৃণ হলে রাস্তায় যানবাহন চলাচল সহজ্বের হয় এবং শ্রমণ আরামদায়ক হয়। রাস্তা যত বেশি মসৃণ হবে বাধাদানকারী ঘর্ষণ বলের মানও তত কম হবে। গাড়ির টায়ার এবং রাস্তার মধ্যবর্তী ঘর্ষণ বলের মান টায়ারের এবং একই সাথে রাস্তার মসৃণতার উপর নির্ভর করে। ঘর্ষণ বলের পরিমাণ অনেক কমে গেলে নানা ধরনের সমস্যারও সৃষ্টি হয়। তাই রাস্তাকে খুব বেশি মসৃণ করাও ঠিক নয়। রাস্তা বেশি মসৃণ হলে ব্রেক প্রয়োগ করা সন্থেও গাড়িকে সুনির্দিষ্ট স্থানে থামানো সম্ভব হয়ে উঠে না। গাড়ির গতির জন্য ঘর্ষণ খুব গুরুত্বপূর্ণ। রাস্তা বেশি মসৃণ হলে প্রয়োজনীয় প্রতিক্রিয়া বল সৃষ্টি হয় না। রাস্তা বেশি মসৃণ হলে ঘর্ষণ বলের মান অত্যধিক কমে যায়, ফলে গাড়ি সামনের দিকে অগ্রসর হয় না। তাই রাস্তার মসৃণতা এমন হবে যাতে করে রাস্তা প্রয়োজনীয় ঘর্ষণ বলের যোগান দেয়।

গতি নিয়ম্ত্রণ এবং ব্রেকিং বল

যানবাহন চলাচলের সময় প্রয়োজন অনুযায়ী যানবাহনের গতিকে বৃদ্ধি বা হ্রাস করতে হয়। অর্থাৎ যানবাহনের গতিকে নিয়ন্ত্রণের প্রয়োজন পড়ে।

ব্রেক হচ্ছে এমন এক ব্যবস্থা যা ঘর্ষণের পরিমাণ বৃদ্ধি করে গাড়ির গতি তথা চাকার ঘূর্ণনকে প্রয়োজন অনুযায়ী নিয়ন্ত্রণ করে। এর মাধ্যমে যানবাহনকে নির্দিষ্ট স্থানে থামানো সম্ভব হয়। যখন গাড়ির চালক ব্রেক প্রয়োগ করেন, তখন এসবেস্টসের তৈরি সু বা প্যাড চাকায় অবস্থিত ধাতব চাকতিকে ধাকা দেয়। প্যাড ও চাকতির মধ্যবর্তী ঘর্ষণ চাকার গতিকে কমিয়ে দেয়। ফলে গাড়ির বেগ হ্রাস পায়।

৩.১২ ঘর্ষণের হ্রাস বৃদ্ধি

Increase and decrease of friction

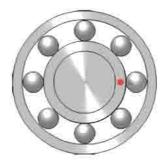
ঘর্ষণ আমাদের দৈনন্দিন জীবনের সাথে ওতপ্রোতভাবে জড়িয়ে আছে। প্রয়োজনে ঘর্ষণকে বৃদ্ধি করা যায়, আবার প্রয়োজনে ঘর্ষণকে হ্রাসও করা যায়। এ অনুচ্ছেদে ঘর্ষণকে কীভাবে হ্রাস ও বৃদ্ধি করা যায় তা নিয়ে আলোচনা করা হলো।

ঘর্ষণের হ্রাস:

তলকে মসৃণ করা

ঘর্ষণের ফলে একটি বস্তুকে এক স্থান থেকে অন্য স্থানে সরাতে বেশ ঝামেলা পোহাতে হয়। ধর তুমি একটি ভারী বক্সকে মেঝের উপর দিয়ে সরাতে চাও। যদি স্পর্শতলের ঘর্ষণের পরিমাণ খুব বেশি হয় তবে বক্সটিকে সরাতে অনেক বেশি পরিশ্রম করতে হবে। তলকে মসৃণ করার মাধ্যমে এ ঘর্ষণকে কমানো যেতে পারে। ৬২

চাকার ব্যবহার


বাস, ট্রাকসহ বিভিন্ন যদ্প্রপাতিতে চাকা দাগানো থাকে। চাকা হলো একটি সূকৌশদ আবিশ্কার। চাকার বৃদ্ধাকার আকার ধর্ষণ কাকে ন্যুনতম পর্যায়ে নামিয়ে আনে। চাকা না থাকলে এ সকল যদ্প্রপাতিকে চালানো সম্ভব হতো কি? স্টেকেসে চাকা দাগানোর ফলে ধর্ষণের মান কমে যায় এবং এটি টানা সহজ্ঞতর হয়। চাকা দাগানোর ফলে আবর্জ ধর্ষণের মান পিছদানো ঘর্ষণের তুলনায় অনেক কমে যায়।

পিচ্ছিলকারী পদার্থের ব্যবহার

তেল, মবিল এবং গ্রিচ্চ জাতীয় পদার্থকে সংক্ষেপে শুব্রিকেন্ট বা পিচ্ছিলকারী পদার্থ বলে। দুইটি তলের মধ্যবর্তী স্থানে বখন এ ধরনের শুব্রিকেন্ট ব্যবহার করা হয় তখন ঘর্ষণের পরিমাণ অনেকাংশে কমে যায়। কোনো ইঞ্জিনের গতিশীল যশ্বাংশের মধ্যবর্তী স্থানে তাই শুব্রিকেন্ট ব্যবহার করা হয়। এছাড়া বাড়িতে সেলাই মেশিনে, তালায় বা কজাতে আমরা তেল ব্যবহার করি।

বল-বেয়ারিং -এর ব্যবহার

চাকা আবিশ্বারের অনুরূপ আরেকটি গুরুত্বপূর্ণ আবিশ্বার হলো বল-বেয়ারিং আবিশ্বার। বল-বেয়ারিং ব্যবহারের মাধ্যমে বিভিন্ন তলের মধ্যবর্তী ঘর্ষণকে আরো কমানো সম্ভবপর হয়েছে। বল-বেয়ারিং হলো ক্ষুদ্র, মসৃণ ধাতব বল। এগুলো সাধারণত ইস্পাতের তৈরি। বল-বেয়ারিং কোনো যম্বের গতিশীল অংশগুলোর মধ্যবর্তী স্থানে বসানো থাকে। বল-বেয়ারিংগুলোর ঘূর্ণনের ফলে যম্বের গতিশীল অংশগুলো পরস্পরের সজ্ঞো সরাসরি ঘর্ষণ সৃষ্টি করতে পারে না। অর্থাৎ তলগুলো একটি অপরটির উপর দিয়ে পিছলানোর পরিবর্তে গড়িয়ে যায় এবং ঘর্ষণ কমে যায়। গাড়ির চাকায়, সাইকেলে এবং বৈদ্যুতিক পাথায় বল-বেয়ারিং দেখতে পাওয়া যায়। চিত্র ৩.১২।

চিত্র : ৩.১২

ঘর্ষণের বৃদ্ধি : গাড়ি চালানো

রাস্তার ঘর্ষণ না থাকলে গাড়ির টায়ার একস্থানে শুধু ঘুরপাক খেত। বৃষ্টির দিনে পিচ্ছিল অথবা কর্দমাক্ত রাস্তার তোমরা হয়তো দেখেছো কেমন করে ট্রাক বা বাস একস্থানে আটকে থাকে। এর কারণ কী ? এর কারণ হলো ঘর্ষণের পরিমাণ অনেক কমে যাওয়া। তাই প্রয়োজন অনুযায়ী ঘর্ষণকে বাড়াতেও হয়। গাড়ির টায়ারকে এমনভাবে তৈরি করা হয় যেন এটি চলার সময় রাস্তাকে ভালোভাবে আকড়ে থরে রাখে এবং প্রয়োজনীয় ঘর্ষণ কা সৃষ্টি করে। এজন্য টায়ারের উপরের পৃষ্ঠে বিভিন্ন ধরনের দাঁত বা খাজ কাটা থাকে। বৃষ্টির দিনে বৃষ্টির পানি বা কাদা টায়ারের খাজের মধ্যে ঢুকে পড়ে এবং টায়ার গানি বা কাদাকে সজোরে কের করে দেয়। কলে টায়ার রাস্তার তলকে ভালোভাবে আঁকড়ে থরে। অর্থাৎ তলকে অমস্ণ করার মাধ্যমে ঘর্ষণকে বাড়ানো যেতে পারে।

জুতার নিচ খাঁজ কাটা

ইাটার জন্য ঘর্ষণ খুবই প্রয়োজন। তোমরা দেখতে পাবে জুতার তলদেশ ঢেউ খেলানো বা খাঁজকাটা থাকে। জুতা পায়ে হাটার সময় জুতার খাঁজগুলো রাস্তাকে আকড়ে ধরে রাখে এবং প্রয়োজনীয় ঘর্ষণ বলের যোগান দেয়। জুতা ও রাস্তার মধ্যবর্তী ঘর্ষণ বৃদ্ধি করার জন্যই জুতার তলদেশ এরূপ হয়ে থাকে। জুতা পুরানো হয়ে গেলে খাঁজগুলো অনেকাংশে মিলিয়ে যায়। যার দর্ন পিচ্ছিল বা ভেজা রাস্তায় জুতা পায়ে হাটা কফকর হয়ে উঠে। লক্ষ করলে দেখবে আমাদের পায়ের তলাও সমতল নয়।

পাহাড়ে আরোহণ

যে সকল ব্যক্তি পাহাড়ে আরোহণ করেন তাদেরকে শিলাখন্ড বা পাহাড়ের তলকে ভালোভাবে পা এবং হাত দ্বারা আঁকড়ে ধরে রাখতে হয়। ধরে রাখার জন্য তারা চক পাউডার ব্যবহার করেন।

খেলোয়ারদের বুটের নিচে স্পাইক থাকে যাতে দৌড়ানোর সময় পড়ে না যায়।

৩.১৩ ঘর্ষণ : একটি প্রয়োজনীয় উপদ্রব

Friction: a necessary evil

ঘর্ষণের অনেক অসুবিধা থাকা সত্ত্বেও ঘর্ষণকে একটি প্রয়োজনীয় উপদ্রব হিসেবে গণ্য করা হয়। এর কারণ কী? ঘর্ষণ ছাড়া আমরা কোনো কিছুই করতে পারিনা। যদি ঘর্ষণ না থাকত তা হলে বস্তুর কোনো গতিই আর শেষ হতো না, বিরামহীনভাবে চলতে থাকত। ঘর্ষণ আছে বলেই দেয়ালে একটি পেরেক স্থিরভাবে আটকে থাকে। ঘর্ষণের কারণেই পাকা দালান ও বাড়িঘর নির্মাণ করা সম্ভব হয়েছে। ঘর্ষণের ফলে কাগজে পেনসিল বা কলম দিয়ে লিখতে পারছি। আমাদের জুতা এবং মাটির মধ্যে সৃষ্ট ঘর্ষণের কারণে আমরা হাঁটাচলা করতে পারি। ঘর্ষণের জন্য আমরা প্রয়োজন অনুযায়ী গাড়ির গতির দিক পরিবর্তন করতে পারি। বাতাসের ঘর্ষণ আছে বলেই প্যারাসূট ব্যবহার করে বিমান থেকে নিরাপদে মাটিতে নামা সম্ভব হয়েছে। এতসব উপকারী দিক থাকা সত্ত্বেও ঘর্ষণের জন্য আমাদের কম ঝামেলা পোহাতে হয় না। অতিরিক্ত ঘর্ষণের কারণে যানবাহন সহজে চলতে পারে না। যন্ত্রপাতির গতিশীল অংশগুলোর মধ্যে ঘর্ষণের ফলে এরা ক্ষয়প্রাশত হয় এবং ছিড়ে যায়। যেকোনো ধরনের যানবাহন তা গাড়ি, নৌকা বা উড়োজাহাজ হোক না কেন, অতিরিক্ত ঘর্ষণকে অতিক্রম করতে অতিরিক্ত জ্বালানি খরচ করতে হয়। যার দরুন ঘর্ষণের ফলে জ্বালানি শক্তির অপচয় হয়।

ঘর্ষণের ফলে শক্তির যে অপচয় হয় তা প্রধানত তাপশক্তিরূপে আবির্ভূত হয়। ঘর্ষণের ফলে শুধু যে শক্তি তাপে পরিণত হয় তাই নয়, এর ফলে ইঞ্জিনের যন্দ্রাংশ অত্যধিক উত্তপত হয়ে উঠে। যার দর্ন ইঞ্জিন নফ হয়ে যেতে পারে। ঘর্ষণের ফলে জুতার সোল ক্ষয়প্রাশত হয় এবং ছিঁড়ে যায়। তাই আমাদের কাজকর্ম ও জীবন যাপন সহজ করার জন্য ঘর্ষণ যেমন প্রয়োজন, তেমনি অতিরিক্ত ঘর্ষণ অনেক ক্ষয়ক্ষতিরও কারণ। তাই প্রয়োজনীয় ঘর্ষণ সৃষ্টির জন্য ঘর্ষণকে নিয়ন্ত্রণ করতে হয়। কখনো আমরা ঘর্ষণকে বিভিন্ন প্রক্রিয়ার মাধ্যমে কমাতে চাই, আবার কখনো একে বাড়াতে চাই। অর্থাৎ ঘর্ষণকে যেমন পুরোপুরি বাদ দেওয়া যায় না, তেমনিভাবে অনেক ক্ষেত্রে ঘর্ষণ আমাদের উপকারে আসে। এজন্য ঘর্ষণকে বলা হয় একটি প্রয়োজনীয় উপদ্রব।

প্রতিবেদন রচনা

আমাদের জীবনে ঘর্ষণের ইতিবাচক প্রভাব সম্পর্কে একটি প্রতিবেদন প্রস্তৃত করে শিক্ষকের কাছে উপস্থাপন কর। শিক্ষক সবচেয়ে ভালো প্রতিবেদন নির্বাচন করে শ্রেণি কক্ষে উপস্থাপন করতে বলবেন।

অনুসন্ধান ৩.১ : কোনো বস্তুর উপর প্রযুক্ত বল পরিমাপ

উদ্দেশ্য : সহজ্ব পরীক্ষণের সাহায্যে বল পরিমাপ করা।

সূত্র: আমরা জানি, কোনো বস্তুর উপর F বল ফ্রিয়া করলে এবং বল প্রয়োগের ফলে সৃষ্ট ত্বরণ a হলে, F=ma এখানে m বস্তুর ভর। অভিকর্ষ বলের ক্ষেত্রে বস্তুর ত্বরণ a কে g দ্বারা প্রকাশ করা যায়। অর্থাৎ অভিকর্ষ বল বা বস্তুর ওজন, W=mg। এখানে বলের উদাহরণ হিসেবে আমরা বস্তুর ওজন পরিমাপ করব।

যশ্ত্রপাতি ঃ স্প্রিং নিক্তি, বস্তু।

কাচ্ছের ধারা :

- ১. নিউটন এককে দাগাজ্ঞিত একটি স্প্রিং নিক্তি দেয়ালে ঝুলিয়ে নাও।
- এবার স্প্রিং –এর নিচের হুকে বস্তৃটি ঝুলিয়ে দাও।
- **৩. স্প্রিং নিক্তির স্কেল থেকে বস্তুর ওজন তথা অভিকর্ষ বলের পাঠ রেকর্ড কর এবং ছকে বসাও**।
- একইভাবে ৩ নং প্রক্রিয়া অনুসরণ করে কয়েরকবার বস্তুর ওজন নির্ণয় কর এবং ছকে স্থাপন কর।
- ৫. এবার বস্তুর উপর প্রযুক্ত গড় বল বা ওজন নির্ণয় কর।

ক্রমিক সংখ্যা	বস্তুর ওজন (নিউটন)	গড় ও জন নিউটন
١.		
২.		
৩.		
8.		
Œ.		

এখন এই বস্তুর পরিবর্তে বিভিন্ন বস্তু নিয়ে কয়েকবার পরীক্ষণ সমাশ্ত কর এবং তাদের ওজন নির্ণয় কর।

जनु नी ननी

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উত্তরের পাশে টিক (\sqrt) চিহ্ন দাও

১। বস্তু যে অবস্থায় আছে চিরকাল সে অবস্থায় থাকতে চাওয়ার যে প্রবণতা বা ধর্ম তাকে কী বলে?

(ক) বল

(খ) ত্বরণ

(গ) জড়তা

(ঘ) বেগ

২। বলের মাত্রা কোনটি?

(ক) MLT⁻²

(켁) MLT⁻¹

(গ) ML⁻²T⁻²

(**ଏ**) M⁻¹LT⁻²

৩। ভরবেগের একক কোনটি?

(季) kg m

(খ) kg ms ⁻¹

(গ) kg m ²s⁻¹

(ঘ) kg ms ⁻²

 $8 ext{ } ext{ } ext{ } ext{5 kg}$ ভরের একটি বস্তুর ওপর $50 ext{ } ext{N}$ বল প্রয়োগ করা হলে, এর ত্বরণ হবে-

(**季**) 12 ms⁻²

(খ) 8 ms⁻²

(গ) 13 ms⁻²

(ঘ) 10 ms⁻²

lpha। $10~{
m kg}$ ভরের কোনো বস্তু $10~{
m ms}^{-1}$ বেগে গতিশীল হলে এর ভরবেগ হবে-

(**季**) 10 kg ms⁻¹

(খ) 120 kg ms⁻¹

(গ) 100 kg ms⁻¹

(ঘ) 1 kg ms⁻¹

খ. সৃজনশীল প্রশ্ন

১। ফারুক 4 kg ভরের একটি বক্স একটি মেঝের উপর দিয়ে সমবলে টেনে নিল। বক্স ও মেঝের মধ্যকার ঘর্ষণ বলের মান হল 1.5 N। বক্সটিকে টেনে নেওয়ায় এর ত্বরণ হল 0.8 ms^{-2} । এরপর বক্সটিকে ঘর্ষণবিহীন মেঝেতে একই বল প্রয়োগ করে টানা হলো।

- ক) সাম্য বল কাকে বলে?
- খ) ঘর্ষণ বল কেন উৎপন্ন হয়?
- গ) প্রথম ক্ষেত্রে বক্সটির উপর প্রযুক্ত বলের মান নির্ণয় কর।
- ঘ) ঘর্ষণযুক্ত ও ঘর্ষণবিহীন মেঝেতে ত্বরণের কীরূপ পরিবর্তন হবে? গাণিতিকভাবে ব্যাখ্যা কর।

গ. সাধারণ প্রশ্ন

- ১। জড়তা কাকে বলে? জড়তা কত প্রকার?
- ২। বল কাকে বলে?
- ৩। কোনো স্থির বস্তুর জড়তা কী দ্বারা পরিমাপ করা হয়?
- ৪। সাম্য বল ও অসাম্য বল বলতে কী বুঝ ?
- ে। কোনো বস্তুর ভরবেগ কাকে বলে?
- ৬। দেখাও যে, বল = ভর × ত্বরণ।
- ৭। ভরবেগের সংরক্ষণ নীতি বলতে কী বুঝ?
- ৮। ঘর্ষণ কাকে বলে? বিভিন্ন প্রকার ঘর্ষণের নাম লিখ।
- ৯। ঘর্ষণ একটি প্রয়োজনীয় উপদ্রব– এর স্বপক্ষে যুক্তি দাও।

চৰ্ধ অধ্যায় **কাজ , ক্ষমতা ও শব্তি** WORK, POWER AND ENERGY

ভাষাদের প্রাত্যহিক জীবনে কোনো কিছু করাকে কাজ বলা হলেও পদার্থবিজ্ঞানে কাজ ঘারা একটি সুনির্দিন্ট ধারণাকে বুঝায়। এই অধ্যায়ের শূরুতে আমরা সেই ধারণাকে উপস্থাপিত করব। বিজ্ঞানের সবচেয়ে গুরুত্পূর্ণ বিষয় হচ্ছে শক্তি। আমরা আমাদের অভিজ্ঞতা থেকে দেখি শক্তি ছাড়া জগৎ অচল। বিভিন্নরূপে আমরা শক্তি পাই। গতিশীল বস্তুর জন্য গতিশক্তি, ভ্পূঠের থানিক উপরে বস্তুর অবস্থানের জন্য বিভব শক্তি, একটি সংক্চিত বা প্রসারিত স্থিৎ এর শক্তি, গরম বস্তুর তাপ শক্তি, আহিত বস্তুর তড়িৎ শক্তি ইত্যাদি। শক্তি ক্রমাণত একরুপ থেকে অন্যরূপে রূপাশ্তরিত হচ্ছে, বদিও মহাবিশ্বের মোট শক্তির পরিমাণ অপরিবর্তনীয় এবং স্নির্দিক্ত। এই অধ্যায়ে আমরা শক্তির রূপাশ্তরের ঘটনা এবং বিজ্ঞানের গুরুত্বপূর্ণ নীতিগুলোর একটি শক্তির সংরক্ষণশীলতার নীতি নিয়ে আলোচনা করব।]

এই অধ্যার পাঠ শেবে আমরা-

- কাছ ও শক্তির সম্পর্ক ব্যাখ্যা করতে পারব।
- কাজ, বল ও সরণের মধ্যে সম্পর্ক স্থাপন করতে পারব।
- গতি শব্ধি ও বিভব শব্ধি ব্যাখ্যা করতে পারব এবং হিসাব করতে পারব।
- উৎসে শক্তির রূপাশ্তর ব্যাখ্যা করতে পারব।
- প্রবিশেগত প্রভাব বিবেচনায় শক্তির প্রধান উৎসসমূহের অবদান বিশ্লেষণ করতে পারব।
- শক্তির রূপান্তর এবং শক্তির নিত্যতার মধ্যে সম্পর্ক ব্যাখ্যা করতে পারব।
- শব্তির রূপাশ্তর ও এর ব্যবহার পরিবেশের ভারসাম্য ব্যাহত করে ব্যাখ্যা করতে পারব।
- উন্নয়ন কার্যক্রমে শক্তির কার্যকর ব্যবহার ব্যাখ্যা করতে পারব।
- শব্তির কার্যকর ও নিরাপদ ব্যবহারে সচেতন হবো।
- ভর–শক্তির সম্পর্ক ব্যাখ্যা করতে পারব।
- ক্ষমতা ব্যাখ্যা করতে পারব।
- কর্মদক্ষতা পরিমাপ করতে পারব।

8.3 本海

Work

দৈনন্দিন জীবনে কোনো কিছু করাকে কাজ কোলেও বিজ্ঞানে কিল্ছু কোনো কিছু করা হলেই কাজ হয় না। বিজ্ঞানে কাজ একটি বিশেষ অর্থ বহন করে। একজন দারোয়ান সারাক্ষণ বসে বসে একটি বাসা পাহারা দিলেন। তিনি কবেন তিনি তার কাজ করেছেন। কোনো স্রোতের নদী বা খালে একটি নৌকা ভেসে যাচ্ছিল, করিম সাহেব সেটাকে টেনে ধরে রাখছেন। তিনি বলবেন তিনি কাজ করে নৌকাটিকে ঠেকিয়ে রেখেছেন নতুবা সেটি স্রোতের টানে কোধায় ভেসে বেত। দৈনন্দিন জীবনে এগুলোকে কাজের স্বীকৃতি দিলেও বিজ্ঞানের দৃষ্টিতে কিল্ছু এগুলো কাজ হয়নি। বরং দারোয়ান বসে বসে পাহারা না দিয়ে যদি হেঁটে হেঁটে পাহারা দিতেন কিবো নৌকাটি যদি স্রোতের টানে ভেসে বেত তাহলে কিছু কাজ হতো। বিজ্ঞানে কাজের অর্থ দৈনন্দিন জীবনে কাজের অর্থের চেয়ে তিনুতর। আসলে বিজ্ঞানে কাজ হতে গেলে কল ও তার সাথে সরণ সংশ্রিষ্ট থাকতে হয়। কোনো বস্তুর উপর কোনো বল ক্রিয়া করে যদি কস্তুটির কিছু সরণ ঘটায় তাহলে কেবল কাজ হয়। আমরা আমাদের দৈনন্দিন জীবনে আমাদের চারপাশে কাজের অনেক উদাহরণ দেখতে পাই। গরু মাঠে লাজল টানছে, একজন শ্রমিক ঠেলা গাড়ি ঠেলছেন, ক্রীড়া প্রতিযোগিতায় কেউ লৌহ গোলক নিক্ষেপ করছে ইত্যাদি।

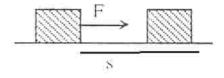
নিচের উদাহরণগুলো বিবেচনা করা যাক:

- (क) রতন এক প্যাকেট বই হাত দিয়ে ধরে দাঁড়িয়ে আছে।
- (খ) মিতা পদার্থবিজ্ঞান বইখানাকে ঠেলে টেবিলের উপর দিয়ে এক প্রান্ত থেকে অন্য প্রান্তে নিয়ে যাছে।
- (গ) নীর একটি ভারী ব্যাগকে সিঁড়ি দিয়ে উপরে উঠাছে।
- (ঘ) ছোট রিমি জোরে দেয়ালকে ঠেলছে।

যেহেতু একটি বল দ্বারা কোনো বস্তু গতিশীল হলেই কেবল কাজ হয়, সূতরাং উল্লিখিত উদাহরণগুলোতে (খ) এবং (গ)— এর ক্ষেত্রে কাজ হয়েছে; কিন্তু (ক) এবং (দ) এর ক্ষেত্রে কোনো কাজ হয়নি। আমরা কোনো বস্তুকে উপরে উঠাতে বা নিচে নামাতে বা এক স্থান থেকে জন্য স্থানে নিতে বল প্রয়োগ করতে পারি। আমরা বল প্রয়োগ করে কোনো বস্তুর আকার পরিবর্তন করতে পারি। এ সকল ক্ষেত্রে কাজ হয়।

ষদি একজন নির্মাণ শ্রমিক দশখানা ইট নিয়ে কোনো ভবনের দোতগায় উঠেন, তবে তিনি একখানা ইট নিয়ে ঐ দোতগায় উঠলে যে কাজ করতেন তার চেয়ে বেশি কাজ করবেন, কেননা তাকে বেশি কা প্রয়োগ করতে হয়। তাকে আরো বেশি কাজ করতে হবে যদি তিনি ঐ দশখানা ইটই তিনতগায় উঠান। স্তরাং কাজের পরিমাণ নির্ভর করে প্রযুক্ত বলের উপর এবং দূরত্ত্বের উপর। কোনো কম্ভূর উপর প্রযুক্ত বল এবং বলের দিকে কম্ভূর অতিক্রান্ত দূরত্ত্বের গৃণফল দ্বারা কাজ পরিমাপ করা হয়। স্ভরাং,

কাছ = বল x বলের দিকে অতিক্রাশত দুরত্ব


কোনো কম্ভূর উপর F কা প্রয়োগে যদি কম্ভূটি বলের দিকে s দূরত্ব অভিক্রম করে (চিত্র : 8.5) তবে কৃত কাব্দ W হবে,

$$W = F_S \tag{4.1}$$

কাজের কোনো দিক নেই। কাজ একটি স্কেশার রাশি।

কাজের মাজা : কাজের মাত্রা হবে বল × সরপের মাত্রা

কাজ = কে × সরণ = ভর × ত্তরণ × সরণ

চিত্র: ৪.১

<u> পদার্থবিজ্ঞান</u>

$$=$$
 ভর $imes rac{\pi \mathfrak{S} \mathfrak{q}}{\pi \mathfrak{A} \mathfrak{A}^2} imes \pi \mathfrak{S} \mathfrak{q}$
 $=$ ভর $imes rac{\pi \mathfrak{S} \mathfrak{q}^2}{\pi \mathfrak{A} \mathfrak{A}^2}$
 $\therefore [W] = rac{ML^2}{T^2} = ML^2 T^{-2}$

কাজের একক : বলের একককে দূরত্বের একক দিয়ে গুণ করলে কাজের একক পাওয়া যায়। যেহেতু বলের একক নিউটন (N) এবং দূরত্বের একক হলো মিটার (m), সূতরাং কাজের একক হবে নিউটন-মিটার $(N\ m)$ । একে জুল বলা হয়। জুলকে J দিয়ে প্রকাশ করা হয়। কোনো বস্তুর উপর এক নিউটন বল প্রয়োগের ফলে যদি বস্তুটির বলের দিকে এক মিটার সরণ হয় তবে সম্পন্ন কাজের পরিমাণকে এক জুল বলে।

$$1 J = 1 N m$$

যদি বল প্রয়োগের ফলে বস্তু বলের দিকে সরে যায় তাহলে সেই কাজকে বলের দারা কাজ বলে।

একটি ডাস্টার টেবিলের উপর থেকে মেঝেতে ফেলে দিলে ডাস্টারটি অভিকর্ষ বলের প্রভাবে নিচের দিকে পড়বে। এক্ষেত্রে অভিকর্ষ দ্বারা কাজ হয়েছে।

যদি বল প্রয়োগের ফলে বস্তু বলের বিপরীত দিকে সরে যায় তাহলে সেই কাজকে বলের বিরুদ্ধে কাজ বলে।

একটি ডাস্টার যদি মেঝে থেকে টেবিলের উপর উঠানো হয় তাহলে অভিকর্ষ বলের বিরুদ্ধে কাব্দ হবে। কেননা, এ ক্ষেত্রে অভিকর্ষ বল যে দিকে ক্রিয়া করে সরণ তার বিপরীত দিকে হয়।

গাণিতিক উদাহরণ $8.5:70~{
m kg}$ ভরের এক ব্যক্তি $200~{
m m}$ উঁচু পাহাড়ে আরোহণ করলে তিনি কত কাজ করবেন?

আমরা জানি,
$$W = F_S$$
 ব্যক্তির ভর , $m = 70 \text{ kg}$ বল, $F =$ ব্যক্তির ভর , $m = 70 \text{ kg}$ বল, $F =$ ব্যক্তির ভজন $= mg$ $= 1.372 \times 10^5 \text{ J}$ $= 686 \text{ N}$ সরণ, $s = 200 \text{ m}$ কাজ, $W = ?$

৪.২ শক্তি

Energy

শক্তি ছাড়া কোনো কিছু চলতে বা কাজ করতে পারে না। আমাদের বেঁচে থাকার জন্য শক্তির প্রয়োজন হয়। প্রতিদিন আমরা যে কাজ করি তা নির্ভর করে আমাদের কতটুকু শক্তি আছে তার উপর। আমরা যে খাবার খাই তা থেকে এ শক্তি পাই। উদ্ভিদের বৃশ্বির জন্য শক্তি লাগে। কোনো যন্দেত্রর কাজ করার জন্য শক্তির প্রয়োজন হয়। কোনো কোনো যন্দ্র বিদ্যুৎ ব্যবহার করে আবার কোনোটা জ্বালানি পুড়িয়ে শক্তি পায়। জ্বালানির মধ্যে শক্তি সঞ্চিত থাকে।

শক্তি বলতে আমরা কী বুঝি? শক্তি বলতে কোনো বস্তুর কাজ করার সামর্থ্যকে বুঝে থাকি। যে বস্তু কাজ করতে সমর্থ তার মধ্যেই শক্তি থাকে, যে বস্তু কাজ করতে সমর্থ না তার মধ্যে কোনো শক্তি থাকে না।

আমরা যখন বলি কোনো বস্তুর মধ্যে শক্তি নিহিত আছে, তখন আমরা বুঝি বস্তুটি অন্য কিছুর উপর বল প্রয়োগ করতে পারে এবং তার উপর কাজ সম্পাদন করতে পারে। আবার আমরা যখন কোনো বস্তুর উপর কাজ করে থাকি, তখন আমরা তার উপর কাজের সমপরিমাণ শক্তি যোগ করে থাকি।

কোনো বস্তুর কাজ করার সামর্থ্যই হচ্ছে শক্তি। কাজ করা মানে শক্তিকে এক অবস্থা থেকে অন্য অবস্থায় রূপান্তরিত করা। এর অর্থ হচ্ছে বস্তুটি সর্বমোট যে পরিমাণ কাজ করতে পারে তাই হচ্ছে শক্তি। যেহেতু কোনো বস্তুর শক্তির পরিমাপ করা হয় তার ঘারা সম্পন্ন কাজের পরিমাণ থেকে, সূতরাং শক্তি ও কাজের পরিমাণ অভিন্ন।

অতএব, কৃত কাজ = ব্যয়িত শক্তি

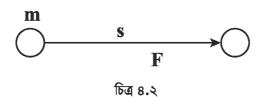
শক্তির কোনো দিক নেই। কাজেই শক্তি স্কেলার রাশি।

শক্তির একক ও কাজের একক একই এবং তা হলো জুল (J)।

শক্তির বিভিন্ন রূপ: বিভিন্ন প্রকার কাজ করার জন্য আমাদের বিভিন্ন ধরনের শক্তির প্রয়োজন হয়। যেমন পানি গরম করতে হলে তাপ শক্তির প্রয়োজন হয়। একটি বৈদ্যুতিক বাল্ব থেকে আমরা আলো শক্তি পাই। আমরা যে সংগীত শুনি তার মধ্যে শব্দ শক্তি নিহিত আছে। কোনো বস্তুকে আমাদের সরাতে বা উপরে উঠাতে পেশি শক্তির প্রয়োজন হয়। কোনো বৈদ্যুতিক যন্ত্রকে চালাতে হলে বিদ্যুৎ শক্তির প্রয়োজন হয়। তড়িৎ কোষে রাসায়নিক বিক্রিয়ার মাধ্যমে আমরা রাসায়নিক শক্তি পাই। এক টুকরা কাগজ বায়ু শক্তির কারণে উড়ে যায়। যখন নিউক্রিয়াসসমূহ জোড়া লাগে বা ভাঙে তখন নিউক্রীয় শক্তি নির্গত হয়।

শক্তি আছে বলেই জগৎ গতিশীল। শক্তি না থাকলে জগৎ অচল হয়ে পড়বে। আলো শক্তি আছে বলেই আমরা দেখতে পাই, শব্দ শক্তি আছে বলেই আমরা শুনতে পাই। যান্ত্রিক শক্তির বদৌলতে আমরা চলাফেরা করতে পারি। বিদ্যুৎ শক্তির সাহায্যে পাখা ঘুরছে, কলকারখানা চলছে। এ মহাবিশ্বে শক্তি নানারূপে বিরাজ করছে। মোটামুটিভাবে আমরা শক্তির নিম্নোক্ত রূপগুলো পর্যবেক্ষণ করি। যথা— যান্ত্রিক শক্তি, তাপ শক্তি, শব্দ শক্তি, আলোক শক্তি, চৌম্বক শক্তি, বিদ্যুৎ শক্তি, রাসায়নিক শক্তি, নিউক্লীয় শক্তি এবং সৌর শক্তি।

শক্তির সবচেয়ে সাধারণরূপ হচ্ছে যান্ত্রিক শক্তি। কোনো বস্তুর অবস্থান বা গতির কারণে তার মধ্যে যে শক্তি নিহিত থাকে তাকে যান্ত্রিক শক্তি বলে। এই অনুচ্ছেদে আমরা যান্ত্রিক শক্তির দুইটি ভাগ— গতির কারণে যে শক্তি তা গতিশক্তি এবং অবস্থানের কারণে যে শক্তি তা বিভব শক্তি এগুলো নিয়ে আলোচনা করব।


গতিশক্তি: আমরা ক্রিকেট খেলায় দেখতে পাই অনেক সময় ক্রিকেট বল স্টাম্পকে আঘাত করে তাকে উড়িয়ে নিয়ে যায়। কোনো কাচের জানালায় শক্ত কিছু আঘাত করলে কাচ ভেঙে যায়। ঢিল ছুঁড়ে আম বা বরই পাড়া যায়। এ উদাহরণগুলো থেকে দেখা যায় যে, গতিশীল বস্তুর মধ্যে শক্তি থাকে। কোনো গতিশীল বস্তু তার গতির জন্য কাজ করার যে সামর্থ্য লাভ করে তাকে গতিশক্তি বলে।

নিজে কর : তোমার সামনের টেবিলের বা ডেস্কের উপর একটি কলম রাখ। কলমের সামনে একটি হালকা বস্তু রাখ। কলমটিকে ঐ বস্তুর দিকে হাত দিয়ে টোকা দাও।

বস্তুটি জায়গা থেকে সরে গেল কেন? টোকার ফলে কলমটি গতিশীল হলো। এতে তার মধ্যে কাজ করার সামর্থ্য তথা গতিশক্তি জন্মাল। সে জন্য বস্তুকে সরাতে পারল।

কোনো স্থির বস্তুতে বেগের সঞ্চার করা আর গতিশীল বস্তুর বেগ বৃদ্ধি করার অর্থ হচ্ছে বস্তুটিতে ত্বরণ সৃষ্টি করা। আর এ জন্য বল প্রয়োগ করতে হবে। ফলে বস্তুর উপর কাজ করা হবে। এতে বস্তুটি কাজ করার সামর্থ্য লাভ করবে এবং এ কাজ বস্তুতে গতিশক্তি হিসেবে জমা থাকবে। সে কারণে সকল সচল বস্তুই গতিশক্তির অধিকারী। বস্তু স্থিতিতে আসার পূর্বে এ পরিমাণ কাজ সম্পন্ন করতে পারবে।

ধরা যাক, m ভরের একটি স্থির বস্তুর উপর F বল প্রয়োগ করায় বস্তুটি v বেগ প্রাপ্ত হলো। ধরা যাক, এ সময় বস্তুটি বলের দিকে g দূরত্ব অতিক্রম করে। বস্তুটিকে এই বেগ দিতে কৃত কাজই বস্তুর গতিশক্তি।

$$∴$$
 গতিশক্তি = কৃত কাজ
$$= \operatorname{বল} \times \operatorname{সরণ}$$

$$= F \times S$$

কিম্ছ,
$$v^2 = u^2 + 2as$$

ৰা,
$$as = \frac{v^2}{2}$$
 [: আদি বেগ $u = 0$]
$$\therefore E_k = \frac{1}{2} m v^2 \tag{4.2}$$

গতিশক্তি = $\frac{1}{2}$ স তর \times (বেগ) 2

গতিশক্তি বস্তুর ভরের উপর নির্ভর করে। বস্তুর ভর যত বেশি হয় তার গতিশক্তিও তত বেশি হয়। একই বেগে তোমার দিকে একটি হালকা টেনিস বল আর একটি ভারী ক্রিকেট বল নিক্ষেপ করা হলে ক্রিকেট বল কর্তৃক আঘাত বেশি হবে।

গতিশক্তি বেগের উপরও নির্ভর করে। বস্তুর বেগ বেশি হলে তার গতিশক্তিও বেশি হবে। একটি ট্রাক কম বেগে কোনো দেয়ালকে আঘাত করলে যে ক্ষতি হবে তার চেয়ে বেশি ক্ষতি হবে ঐ ট্রাকটি যদি বেশি বেগে ঐ দেওয়ালকে আঘাত করে।

> ভর, m = 70 kgগতি শক্তি, $E_k = 1715 \text{ J}$ বেগ, v = ?

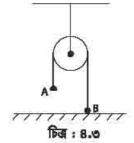
গাণিতিক উদাহরণ ৪.২ : $70~{
m kg}$ ভরের একজন দৌড়বিদের গতিশক্তি $1715~{
m J}~$ হলে তার বেগ কত ?

আমরা জানি

$$E_k = \frac{1}{2}mv^2$$
বা, $v^2 = \frac{2E_k}{m}$

$$\therefore v = \sqrt{\frac{2E_k}{m}}$$

$$= \sqrt{\frac{2 \times 1715 \text{ J}}{70 \text{ kg}}}$$

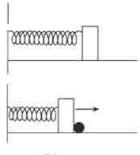

$$= 7 \text{ m s}^{-1}$$
উত্তর : 7 m s^{-1}

বিশুব শক্তি: ছাদের উপর থেকে এক খন্ড পাধর বা ইট কোনো কম্পুর উপর পড়ানে ভাকে চ্যাস্টা করে ফেলতে পারে বা তেন্তে ফেলতে পারে। পাধর বা ইট বখন ছাদের উপর স্থির ছিল তখন ভার মধ্যে শক্তি জমা ছিল। পাধরটি ফখন নিচে পড়ে তখন ঐ শক্তি কাজ করে। পাধরটির মধ্যে শক্তি নিহিত ছিল কেননা এটি ভূপৃষ্ঠ থেকে উপরে ছিল।

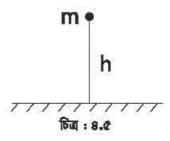
একটি স্প্রিংকে টান টান করে এর দুই মাধা দুইটি কন্ত্রর সাধে আটকে ছেড়ে দিলে কী হবেং কন্তুদ্বর ছুটে এসে পরস্পরের সাথে ধাকা খাবে। টান টান স্থিং বদিও স্থির অবস্থার ছিল তথাপি তার মধ্যে শক্তি সঞ্চিত ছিল। স্থিতি ছেড়ে দিলে এটি কাজ করতে পারে। টান টান স্থিতে শক্তি নিহিত ছিল কেননা এটি বিকৃত অকস্থার ছিল।

স্বাভাবিক অবস্থান থেকে গরিবর্তন করে কোনো বস্ভূকে অন্য অবস্থানে বা স্বাভাবিক অবস্থা গরিবর্তন করে অন্য কোনো অবস্থায় আনলে বস্ভূ কান্ধ করার যে সামর্থ্য অর্জন করে তাকে বিভব শক্তি বলে।

সন্দ্রসারিত কর্মকান্ত : একটি পূলি নিয়ে তার উপর একটি দড়ি পরিয়ে দাও। দড়ির এক প্রাম্তে একটি তারী কর্ম্ম এবং অপর প্রাম্তে হালকা কর্ম্ম B বীব বেন A কর্ম্ম ভূপৃষ্ঠ থেকে উপরে এবং B কর্ম্ম ভূপৃষ্ঠ থাকে (চিত্র : 8.৩)। হাত ছেড়ে দাও।



কী দেখতে পেলেং Λ বস্তু নিচে নামছে তার B বস্তু উপরে উঠছে। Λ বস্তুটি তার স্বাতাবিক অবস্থান লুপৃষ্ঠ থেকে উপরে থাকার কারণে তার ভেতর কাজ করার সামর্থ্য তথা বিশুব শক্তি সঞ্জিত ছিল। এটি ভৃপৃষ্ঠ পর্বস্ত ফিরে তাসতে কাজ করতে পারে। অর্থাৎ B বস্তুকে উপরে উঠাতে পারে।


পরীক্ষণ : একটি স্প্রিং নিয়ে এর এক প্রাশ্ত একটি সৃঢ় অবসন্দলের সাথে আটকাও এবং অপর প্রাশ্তে একটি ব্রক সংযুক্ত কর। এগুলোকে একটি মসৃণ তলের উপর স্থাপন কর। এবন ব্রকটিতে বল প্রয়োগ করে স্থিটিকে সংকুচিত কর এবং ব্রকটির সামনে অন্য একটি বস্তু রাখ (চিত্র : 8.8)। এখন হাত ছেড়ে দাও।

বস্তুটি ছিটকে দূরে সরে গেল কেন? স্থিটি তার আগের শিথিল অবস্থানে কিরে আসার সময় কাজ করতে পারল — অন্য কস্তুকে সরাতে পারল। স্থিটি এই যে তার স্বাতাথিক অবস্থা পরিবর্তনের জন্য কাজ করার সামর্থ্য লাভ করল সেটি তার বিভব শক্তি। স্বাভাবিক অবস্থান বা অবস্থা থেকে পরিবর্তন করে কোনো বস্তুকে অন্য কোনো অবস্থান বা অবস্থার আনতে যদি কোনো বঙ্গের বিরুপ্থে কোনো কাজ করা হয় তথন কস্তুটি ঐ পরিমাণ কাজ করার সামর্থ্য লাভ করে অর্থাৎ শক্তি সঞ্চয় করে। এই কথাটি খাটে সংরক্ষণশীল বল ষথা মহাকর্ষ কল, ভড়িৎ বল, চৌম্বক কল, স্থিৎ কা ইত্যাদির প্রভাব কায়ের মধ্যে। এই প্রভাব কায়কে ঐ বঙ্গের কাকের কাছের বলা হয়। বেমন মহাকর্ষ ক্ষেত্র, ভড়িৎ কের ইত্যাদি। আমরা যথন ভুগৃষ্ঠ থেকে কোনো কস্তুকে উপরে তুলি তথন অভিকর্ম বন্ধের বিরুপ্থে কাজ করি। কলে ঐ বস্তু কিছু বিভব শক্তি লাভ করে। বস্তুটি যদি ভুগৃষ্ঠে পড়ে তথন ঐ পরিমাণ কাজ করতে পারে।

m ভরের কোনো কম্ছুকে খুণ্ঠ থেকে h উচ্চতায় (চিত্র : ৪.৫) উঠাতে কৃত কাজই হচ্ছে কম্ছুতে সঞ্চিত বিভব শক্তির গরিমাপ। আর এ ক্ষেত্রে কৃত কাজ হচ্ছে কম্ছুর উপর প্রযুক্ত অভিকর্ষ কল তথা বম্ছুর ওজন এবং উচ্চতার পূণফদের সমান।

हिता: 8.8

∴ বিভব শক্তি = বস্তুর ওজন
$$\times$$
 উচ্চতা = mgh

$$∴ E_p = mgh \tag{4.3}$$

অর্থাৎ বিভব শক্তি = কম্তুর ভর 🗴 অভিকর্মজ ত্বরণ 🗴 উচ্চতা

বিভব শক্তির পরিমাণ ভূপৃষ্ঠ থেকে কম্তুর উচ্চতার উপর নির্ভর করে। উচ্চতা যত বেশি হবে, বিভব শক্তিও তত বেশি হবে। বিভব শক্তি বস্তুর ভরের উপরও নির্ভর করে। ভর যত বেশি হবে বিভব শক্তিও তত বেশি হবে।

কোনো বস্তুর মধ্যে বিভব শক্তি থাকলে এবং তাকে ব্যবহার করতে হলে এটিকে আগে অন্য শক্তিতে রূপান্তর করে নিতে হবে। যেমন ছাদের উপর থাকা পাথর খণ্ডটি ততক্ষণ বিপজ্জনক নয় যতক্ষণ না এর বিভব শক্তি গতিশক্তিতে রূপান্তরিত হয় অর্থাৎ এটি ছাদ থেকে পড়া শুরু করে।

গাণিতিক উদাহরণ ৪.৩ : একটি কম্তুর ভর $6~{
m kg}$ । একে ভূপৃষ্ঠ থেকে $20~{
m m}~$ উচ্চতায় তুললে বিভব শক্তি কত হবে? ${
m g}=9.8~{
m ms}^{-2}$

জামরা জানি, $E_p=mgh$ $= 6~{\rm kg}\times ~9.8~{\rm m~s^{-2}}\times 20~{\rm m}$ $= 1176~{\rm J}$ এখানে, বস্তুর ভর, $m=6~{\rm kg}$ উচ্চতা, $h=20~{\rm m}$ $g=9.8~{\rm m~s^{-2}}$ বিভব শক্তি, $E_p=?$

উত্তর : 1176 J

৪.৩ শক্তির প্রধান উৎস

Main sources of energy

যদত্রনির্ভর বর্তমান সভ্যতা শক্তি ছাড়া এক মুহূর্তও চলতে পারে না। শক্তির বিনিময়ে কাজ পাওয়া যায়। সকল জীবের বেঁচে থাকার জন্য শক্তির নিরবচ্ছিন্ন যোগান থাকতে হবে। জীবন যাত্রার মানোন্নয়নের সাথে মানুষের শক্তির চাহিদা দিন দিন বেড়েই চলেছে। বাড়তি শক্তির প্রয়োজনে মানুষকে নিত্যনতুন শক্তির উৎসের সম্পান করতে হচ্ছে। সৃষ্টিকে টিকিয়ে রাখার জন্য শক্তির যোগান অব্যাহত রাখতে হলে শক্তির উৎস সম্পর্কে আমাদের পরিষ্কার ধারণা থাকা প্রয়োজন। আমরা জানি সূর্যই প্রায় সকল শক্তির উৎস। এ ছাড়াও পরমাণুর অভ্যন্তরে নিউক্লিয়াসের নিউক্লীয় শক্তি ও পৃথিবীর অভ্যন্তরে অবস্থিত গলিত উত্তর্গত পদার্থ থেকে প্রান্ত শক্তিও শক্তির উৎস হিসেবে বিবেচিত হচ্ছে। পৃথিবীতে যত শক্তি আছে তার প্রায় সবটাই কোনো না কোনোভাবে সূর্য থেকে আসা বা সূর্য কিরণ ব্যবহৃত হয়েই তৈরি হয়েছে।

রাসায়নিক/জ্বালানি শক্তি

আদিমকালে মানুষ সকল কাচ্চে পুরোপুরি নির্ভর করত তার পেশি শক্তির উপর। এরপর মানুষ পশুকে বশে আনল এবং পশু শক্তিকে বিভিন্ন কাচ্চে ব্যবহার করতে লাগল। পশু শক্তির সাহায্যে কৃষিকান্ত, জিনিসপত্র বহন ইত্যাদি কান্ত মানুষ করত। কাঠ ও গাছের পাতা পুড়িয়ে তাপ শক্তি সৃষ্টি, জলস্রোত ও বায়ুপ্রবাহ থেকে যন্ত্রশক্তি উৎপন্ন করা ছিল সভ্যতার প্রাথমিক সতর। যন্ত্রশক্তি ব্যবহারের ফলে মানুষের অর্থনৈতিক উনুতি শুরু হলো। শিল্প বিপ্লব ও বাষ্পীয় ইঞ্জিনের আবিষ্কার মানুষের ও পশুদের পেশি শক্তির উপর নির্ভরতা কমিয়ে দিল। বাষ্প শক্তির সাহায্যে মানুষ বিভিন্ন যন্ত্রপাতি চালাতে থাকল। এ বাষ্প শক্তি উৎপন্ন করার জন্য জ্বালানি প্রয়োজন। বিভিন্ন প্রকার জ্বালানিকেই তাই আমরা শক্তির উৎস হিসেবে বিবেচনা করি।

শক্তির অতি পরিচিত উৎস হলো কয়লা, খনিজ তেল ও প্রাকৃতিক গ্যাস। ভূঅভ্যন্তরে কয়লা, তেল বা প্রাকৃতিক গ্যাস পাওয়া যায় যা সরাসরি বা সামান্য পরিশোধিত করে জ্বালানি হিসেবে ব্যবহার করা যায়।

কয়লা : শক্তির উৎসগুলোর মধ্যে কয়লার পরিচিতি সবচেয়ে বেশি। কয়লা একটি জৈব পদার্থ। পৃথিবীতে এক সময় অনেক গাছপালা ছিল। বিভিন্ন প্রাকৃতিক বিপর্যয় ও স্বাভাবিকভাবে গাছের পাতা বা কান্ড মাটির নিচে চাপা পড়ে এবং জমতে থাকে। গাছের পাতা ও কান্ড রাসায়নিক পরিবর্তনের ফলে কয়লায় রূপান্তরিত হয়। কয়লা পুড়িয়ে সরাসরি তাপ পাওয়া যায়। এটি একটি অতি পরিচিত জ্বালানি। তবে জ্বালানি হিসেবে ব্যবহার ছাড়াও কয়লা থেকে বহু প্রয়োজনীয় পদার্থ উৎপাদিত হয়। এদের মধ্যে রয়েছে কোল গ্যাস, আলকাতরা, বেঞ্জিন, অ্যামোনিয়া, টলুয়িন প্রভৃতি। রান্না করতে ও বাম্পীয় ইঞ্জিন চালাতে কয়লা ব্যবহৃত হয়। আধুনিক কালে কয়লার প্রধান ব্যবহার বিদ্যুৎ উৎপাদন কেন্দ্রে। তাপবিদ্যুৎ কেন্দ্রের প্রধান উপাদান কয়লা।

কয়লা চালিত বিদ্যুৎ উৎপাদন কেন্দ্রের প্রধান সমস্যা হচ্ছে এটি সালফারের ধোঁয়া নির্গমণ করে। এই ধোঁয়া এসিড বৃষ্টির সৃষ্টি করে। এই এসিড যদিও খুব দুর্বল, কিন্তু তা পুকুর, হ্রদ ও খালে বিলে মাছ মেরে ফেলে, বন ধ্বংস করে এবং প্রাচীন পাথুরে খোদাই করা কাজ নস্ট করে ফেলে।

খনিচ্ছ তেল : শক্তির অন্যতম প্রধান উৎস খনিচ্চ তেল বা পেট্রোলিয়াম। বর্তমান সভ্যতায় পেট্রোলিয়ামের ব্যবহার অত্যন্ত ব্যাপক। গ্রামের কুঁড়েঘর থেকে শুরু করে আধুনিকতম পরিবহন ব্যবস্থা সর্বত্রই এর ব্যবহার রয়েছে। পেট্রোলিয়াম থেকে নিম্কাশিত তেল পেট্রোল, পাকা রাস্তার উপর দেওয়া পিচ, কেরোসিন ও চাষাবাদের জন্য ব্যবহৃত রাসায়নিক সার পাওয়া যায়। পরিবহনের জ্বালানি হিসেবে পেট্রোলের জুড়ি নেই। পেট্রোলিয়াম থেকে আরো পাওয়া যায় নানান রকম কৃত্রিম বস্ত্র। এগুলো হলো টেরিলিন, পলিয়েস্টার, ক্যাশমিলন ইত্যাদি। এছাড়া পেট্রোলিয়াম থেকে তৈরি হয় নানা রকম প্রসাধনী। এতসব ব্যবহার থাকা সত্ত্বেও এর মূল ব্যবহার জ্বালানি হিসেবে। পেট্রোলিয়ামজাত সামগ্রীর প্রধান ব্যবহার হলো তড়িৎ ও যানিত্রক শক্তি উৎপাদন। পেট্রোলিয়াম একটি ল্যাটিন শব্দ। এটি তৈরি হয়েছে পেট্রো ও অলিয়াম মিলে। ল্যাটিন ভাষায় পেট্রো শব্দের অর্থ পাথর এবং অলিয়াম শব্দের অর্থ তেল। সূতরাং পেট্রোলিয়াম হলো পাথরের তেল অর্থাৎ পাথরের মধ্যে সঞ্চিত তেল। টারশিয়ারি যুগে অর্থাৎ আজ থেকে পাঁচ ছয় কোটি বছর আগে সমুদ্রের তলদেশে পাললিক শিলার স্তরে স্তরে গাছপালা ও সামুদ্রিক প্রাণী চাপা পড়ে যায়। বিভিন্ন রাসায়নিক পরিবর্তনের ফলে এরা রূপান্তরিত হয় খনিজ তেলে। আজকের স্থালভাগের অনেকাংশ প্রাগৈতিহাসিক যুগে সমুদ্রের তলদেশে ছিল।

প্রাকৃতিক গ্যাস : প্রাকৃতিক গ্যাস শস্তির একটি পরিচিত উৎস। বিশেষ করে বাংলাদেশে প্রাকৃতিক গ্যাসের ব্যবহার ব্যাপক। উন্নত দেশগুলোতেও প্রাকৃতিক গ্যাসের ব্যবহার খুব বেশি। বিভিন্ন শিল্প কারখানায় এর ব্যবহার রয়েছে। এর ব্যবহার প্রধানত জ্বালানি হিসেবে। বাংলাদেশে রান্নার কাজে এর ব্যাপক ব্যবহার রয়েছে। এছাড়াও ব্যবহার রয়েছে অনেক সার কারখানায়। গ্যাসের সাহায্যে তাপশক্তি উৎপাদিত হয় এবং তা থেকে তাপ বিদ্যুৎ কেন্দ্রে উৎপাদিত হয় বিদ্যুৎ।

প্রাকৃতিক গ্যাস পাওয়া যায় ভূগর্ভ থেকে। সুগভীর কূপ খনন করে ভূগর্ভ থেকে এ গ্যাস উত্তোলন করা হয়। পৃথিবীর অভ্যন্তরে প্রচন্ড তাপ ও চাপ এ ধরনের গ্যাস সৃষ্টির মূল কারণ। পেট্রোলিয়াম কূপ থেকেও প্রাকৃতিক গ্যাস পাওয়া যায়। প্রাকৃতিক গ্যাসের প্রধান উপাদান মিথেন গ্যাস। এই সকল শক্তিকে জীবাশা শক্তিও বলা হয়।

উপরে শক্তির যে তিনটি উৎস সম্পর্কে আলোচনা করা হলো মানুষের শক্তির চাহিদা বৃদ্ধির ফলে এগুলো খুব দুত ফুরিয়ে আসছে। পৃথিবীর বর্তমান ভৌত অবস্থা যা তাতে করে এ সকল উৎস যেমন কয়লা, খনিজ তেল, প্রাকৃতিক গ্যাস আর নতুন করে সৃষ্টি হওয়ার নয় এদেরকে অনবায়নযোগ্য শক্তি বলা হয়। ফলে শক্তির বিকল্প উৎসের দিকে ঝুঁকছে মানুষ। এ সকল শক্তির বিপরীতে বিকল্প যে সকল উৎস ব্যবহারের দিকে মানুষ আকৃষ্ট হচ্ছে তার মধ্যে সৌরশক্তি, পানি প্রবাহ থেকে প্রাশ্ত শক্তি, জোয়ার-ভাটা শক্তি, ভূ-তাপীয় শক্তি, বায়ু শক্তি, বায়োমাস ইত্যাদি উৎসগুলো প্রধান। এ উৎসগুলো প্রত্যক্ষ বা পরোক্ষভাবে সূর্যের উপর নির্ভরশীল। যতদিন পৃথিবী সূর্যের আলো পেতে থাকবে ততদিন পর্যন্ত এ সকল উৎস থেকে শক্তির সরবরাহ পাওয়া সম্ভব হবে। তাই এই সকল উৎসকে নবায়নযোগ্য শক্তির উৎস বলা হয়।

সৌরশক্তি: সূর্য থেকে যে শক্তি পাওয়া যায় তাকে বলে সৌরশক্তি। আমরা জানি সূর্য সকল শক্তির উৎস। পৃথিবীতে যত শক্তি আছে তার প্রায় সবই কোনোনা কোনোভাবে সূর্য থেকে আসা বা সূর্য কিরণ ব্যবহৃত হয়েই তৈরি হয়েছে। যেমন আধুনিক সভ্যতার ধারক জীবাশ্ম জ্বালানি (কয়লা, খনিজ তেল, প্রাকৃতিক গ্যাস) আসলে বহুদিনের সঞ্চিত সৌরশক্তি।

প্রাচীনকাল থেকে মানুষ সূর্য কিরণকে সরাসরি ব্যবহার করছে কোনো কিছু শুকানোর কাজে। বর্তমানে সূর্যের শক্তিকে সবসময় ব্যবহারের জন্য মানুষ নানান রকম উপায় অবলম্বন করছে। লেন্স বা দর্পণের সাহায্যে সূর্য রশ্মিকে অভিসারী করে আগুন জ্বালানো যায়। সূর্য কিরণকে ধাতব প্রতিফলকের সাহায্যে প্রতিফলিত করে তৈরি হয় সৌরচুল্লি। এ চুল্লিতে রান্না করা যায়।

করে দেখ : 15 cm বা 20 cm ফোকাস দ্রত্বের একটি অবতল দর্পণ ও এক টুকরা কাগজ নাও। দর্পণটিকে সূর্যের দিকে মুখ করে ধর। কাগজের টুকরাটি হাতে নিয়ে দর্পণের সাহায্যে কাগজের উপর সূর্যালোক কেন্দ্রীভূত কর। এভাবে কাগজের টুকরাটিতে আগুন না জ্বলা পর্যন্ত ধরে থাক।

সৌরশক্তিকে শীতের দেশে ঘরবাড়ি গরম করার কাজে ব্যবহার করা হয়। শস্য, মাছ, সবজি শুকানোর কাজে সৌরশক্তি ব্যবহৃত হয়। মাছ শুকিয়ে শুঁটকি তৈরি করে তা বহুদিন সংরক্ষণ করা যায়। সৌরশক্তির আরো উদাহরণ হচ্ছে — সোলার ওয়াটার হিটার, সোলার কুকার ইত্যাদি।

আধুনিক কৌশল ব্যবহার করে তৈরি হয়েছে সৌরকোষ। সৌরকোষের বৈশিষ্ট্য হলো এর উপর সূর্যের আলো পড়লে এ থেকে সরাসরি তড়িৎ পাওয়া যায়। সৌরকোষের নানা রকম ব্যবহার রয়েছে।

- ১। কৃত্রিম উপগ্রহে তড়িৎ শক্তি সরবরাহের জন্য এ কোষ ব্যবহৃত হয়। এ জন্য কৃত্রিম উপগ্রহ বহুদিন ধরে তার কক্ষপথে ঘুরতে পারে।
- ২। বিভিন্ন ইলেকট্রনিক যশ্ত্রপাতি যেমন পকেট ক্যালকুলেটর, পকেট রেডিও, ইলেকট্রনিক ঘড়ি সৌরশস্তির সাহায্যে চালানো হচ্ছে।
- ৩। বর্তমানে আমাদের দেশেও সৌরশক্তির সাহায্যে অনেক গ্রামে, বাসা–বাড়ি বা অফিসে বিদ্যুৎ শক্তি উৎপাদন করে। বিদ্যুতের চাহিদা মেটানো হচ্ছে।

সৌরশক্তি ব্যবহারের সুবিধা হলো এ শক্তি ব্যবহারে পরিবেশ দৃষণের সম্ভাবনা কম। এ শক্তি ব্যবহারে বিপদের আশজ্জা নেই বললেই চলে। সৌরশক্তির সহসা নিঃশেষ হয়ে যাওয়ার কোনো সম্ভাবনা নেই। এ শক্তির তাই প্রচলিত শক্তি উৎস জীবাশ্ম দ্বালানির বিকল্প হিসেবে ব্যবহারের সম্ভাবনা খুব বেশি।

জ্লবিদ্যুৎ (যানিত্রক শক্তির রূপান্তর)

পানি নবায়নযোগ্য শক্তির অন্যতম উৎস। পানির স্রোত ও জোয়ার—ভাটাকে ব্যবহার করে শক্তি উৎপাদন করা যায়। প্রবাহিত পানির স্রোতে বিভিন্ন ধরনের শক্তি আছে যেমন গতিশক্তি ও বিভব শক্তি। পানির প্রবাহ বা স্রোতকে কাজে লাগিয়ে যে তড়িৎ বা বিদ্যুৎ উৎপাদন করা হয় তাকে বলা হয় জলবিদ্যুৎ। পৃথিবীর বিভিন্ন দেশের জলবিদ্যুৎ প্রকল্পে জলবিদ্যুৎ উৎপাদনের জন্য বিভব শক্তি ব্যবহার করা হয়। প্রবাহিত পানির স্রোতকে ব্যবহার করে বিদ্যুৎ উৎপাদনের প্রক্রিয়াটি সহজ। পানির স্রোতের সাহায্যে একটি টার্বাইন ঘোরানো হয়। এই টার্বাইনের ঘূর্ণন থেকেই এখানে যানিত্রক শক্তি ও চৌন্দ্রকশক্তির সমন্বয় ঘটানো হয়।

প্রবাহিত পানির স্রোত থেকে যাশিত্রক শক্তি সংগ্রহ করে চৌস্বক শক্তির সমন্বয়ে তড়িৎ উৎপাদন করা হয় বলে এ

মডেল তৈরি: পড়স্ত পানির শক্তিকে কাচ্চে লাগিরে টার্বাইন স্থারিরে একটি ডারনামো চালিয়ে জ্বলবিদ্যুৎ উৎপাদন কেন্দ্রের একটি মডেল তৈরি কর। চিত্র: (৪.৬)।

ধরনের তড়িতের নাম জ্বলবিদ্যুৎ। আমাদের দেশে কাশ্তাই বিদ্যুৎ উৎপাদন কেন্দ্রে পানির বিভব শক্তিকে ব্যবহার করে বিদ্যুৎ উৎপাদন করা হয়।

নদী বা সমৃদ্রের পানির জোয়ার—ভাটার শক্তিকে ব্যবহারের প্রচেন্টা মানুষ বহুদিন থেকে চালিয়ে যাচ্ছে। জোয়ার—ভাটার শক্তিকে কাজে লাগিয়ে বিভিন্ন যশত্র চালনার ব্যাপারটি অনেকদিন আগেই উদ্ধাবিত হয়েছে।

ফ্রান্সে জোয়ার—ভাটার শব্ধির সাহায্যে তড়িৎ শব্ধি প্রকল্প সফলতার সাথে কাজ করছে। বর্তমানে পৃথিবীর বিভিন্ন দেশে জোয়ার—ভাটার শব্ধিকে কাজে লাগিয়ে তড়িৎ উৎপাদনের চেন্টা চলছে।

বায়ু শক্তি: পৃথিবী পৃষ্ঠের তাপমাত্রার পার্থক্যের কারণে বায়ু প্রবাহিত হয়। বায়ু প্রবাহজনিত গতিশক্তিকে আমরা যাশ্ত্রিক বা তড়িৎ শক্তিতে রূপাশ্তরিত করতে পারি। শক্তি রূপাশ্তরের এরূপ যশত্রকে বায়ুকল বলে। বায়ু প্রবাহকে কাজে লাগিয়ে প্রাচীনকালের মানুষেরা কুয়া থেকে পানি তোলা, জাহাজ চালানো ইত্যাদি কাজ সম্পাদন করতো। নৌকায় পাল তুলে আজও বায়ু শক্তিকে কাজে লাগানো হয়। বর্তমানে প্রযুক্তি ব্যবহার করে বায়ুকল কাজে লাগিয়ে তড়িৎ উৎপাদন করা হচ্ছে।

ভূ—ভাসীয় শক্তি: ভূ—অভ্যন্তরের তাপকে শক্তির উৎস হিসেবে ব্যবহার করা যেতে পারে। ভূ—অভ্যন্তরের গভীরে তাপের পরিমাণ এত বেশি যে তা শীলাখন্ডকে গলিয়ে ফেশতে পারে। এ গলিত শীলাকে ম্যাগমা বলে। ভূতান্ত্বিক পরিবর্তনের ফলে কখনো কখনো এই ম্যাগমা উপরের দিকে উঠে আসে যা ভূপৃষ্ঠের খানিক নিচে জমা হয়। এ সকল জারগা হট স্পট (Hot spot) নামে পরিচিত। ভূ—গর্ভস্থ পানি এ হট স্পটের সংস্পর্ণে এসে বাক্ষে পরিণত হয়। এই বাক্ষা ভূ—গর্ত আটকা পড়ে যায়। হট স্পটের উপর গর্ত করে পাইপ তুকিয়ে উচ্চ চাপে এই বাক্ষাকে বের করে আনা যায় যা দিয়ে টার্বাইন খুরিয়ে বিদ্যুৎ উৎপাদন সম্ভব। নিউজিল্যান্ডে এ রকম বিদ্যুৎ উৎপাদন কেন্দ্র আছে।

বারোমাস শক্তি: সৌর শক্তির একটি ক্ষুদ্র ভগ্নাংশ যা সবুজ গাছপালা হারা সালোক সংশ্লেষণ প্রক্রিয়ায় রাসায়নিক শক্তিতে র্পাশ্তরিত হয়ে বারোমাসর্পে গাছপালার বিভিন্ন অংশে মজ্দ থাকে। বায়োমাস কাতে সেই সব জৈব পদার্থকে বৃঝায় যাদেরকে শক্তিতে র্পাশ্তরিত করা যায়। মান্যসহ অনেক প্রাণী খাদ্য হিসেবে বায়োমাস গ্রহণ করে তাকে শক্তিতে র্পাশ্তরিত করে জীবনের কর্মকান্ড সচল রাখে। বায়োমাসকে শক্তির একটি বহুমুখী উৎস হিসেবে বিবেচনা করা যায়। জৈব পদার্থসমূহ যাদেরকে বায়োমাস শক্তির উৎস হিসেবে ব্যবহার করা যায় সেগুলো হচ্ছে গাছ—গাছালী, জ্বালানি কাঠ, কাঠের বর্জ্য, শস্য, থানের ত্ব ও ক্ড্যা, লতা—পাতা, পশু পাখির মল, পৌর বর্জ্য ইত্যাদি। বায়োমাস প্রধানত কার্বন ও হাইড্রোজেন হারা গঠিত। নবায়নযোগ্য শক্তির অন্যতম উৎস বায়োমাস।

বায়োমাস থেকে সহজে উৎপাদন করা যায় বায়োগ্যাস। এ গ্যাস জামরা প্রাকৃতিক গ্যাসের বিকল্প হিসেবে রান্নার কাজে এমনকি বিদ্যুৎ উৎপাদনের কাজেও ব্যবহার করতে পারি। এর উৎপাদন পদ্ধতিও বেশ সহজ। একটি আবঙ্গ্ধ পাত্রের মধ্যে গোবর ও পানির মিশ্রণ ১ ঃ ২ অনুপাতে রেখে পচানো হলে বায়োগ্যাস উৎপন্ন হয়। যা নলের সাহায্যে বেরিয়ে

আসে। এ গ্যাস রান্নার কাজে ব্যবহার করা যায়। ৪/৫ জনের একটি পরিবারের রান্না ও বাতি জ্বালানোর গ্যাসের জন্য ২/৩ টি গরুর গোবরই যথেক্ট।

নিউক্লীয় শক্তি: নিউক্লীয় বিক্রিয়ায় উৎপন্ন শক্তি ব্যবহার করে বিদ্যুৎ উৎপাদন করা যায়। যে নিউক্লীয় বিক্রিয়ায় প্রাশ্ত শক্তিকে বিদ্যুৎ উৎপাদনে ব্যবহার করা হয় সেই বিক্রিয়াকে বলা হয় নিউক্লীয় ফিশন। এতে ইউরেনিয়ামের সাথে নির্দিষ্ট শক্তির নিউট্রনের বিক্রিয়া ঘটনো হয়। নিউক্লীয় চুল্লীতে এই বিক্রিয়া ঘটানো হয়।

ভর-শক্তির সম্পর্ক: নিউক্লীয় বিক্রিয়ায় সাধারণত পদার্থ তথা ভর শক্তিতে রূপান্তরিত হয়। অবশ্য নিউক্লীয় বিক্রিয়ায় মোট ভরের কেবল একটি ক্ষুদ্র ভগ্নাংশ শক্তিতে রূপান্তরিত হয়। পদার্থ শক্তিতে রূপান্তরিত হলে যদি E পরিমাণ শক্তি পাওয়া যায়, তাহলে

$$E = mc^2$$

এখানে m হচ্ছে শক্তিতে রূপান্তরিত ভর এবং c হচ্ছে আলোর বেগ যা $3 \times 10^{8}~{
m m~s}^{-1}$ এর সমান। পরীক্ষা করে দেখা গেছে একটি ফিশন বিক্রিয়ায় অর্থাৎ একটি নির্দিষ্ট শক্তির নিউট্রন যদি একটি ইউরেনিয়াম নিউক্রিয়াসকে আঘাত করে তাহলে প্রায়

 $200~{\rm MeV} = 200 \times 10^{-6}~{\rm eV} = 200 \times 10^{-6} \times 1.6 \times 10^{-19}~{\rm J} = 3.2 \times 10^{-11}~{\rm J}$ শক্তি নিগত

হয়। যেহেতু ফিশন বিক্রিয়া একটি শৃঙ্খল বিক্রিয়া, মুহূর্তের মধ্যে কোটি কোটি বিক্রয়া সংঘটিত হয় এবং বিপুল পরিমাণ শক্তি নির্গত হয়।

হিসাব কর : $1~{
m kg}$ বস্তুকে যদি সম্পূর্ণরূপে শক্তিতে রূপান্তরিত করা সম্ভব হতো, তাহলে কত কিলোওয়াট ঘন্টা শক্তি উৎপন্ন হতো? $1~{
m formula}$ কিলোওয়াট ঘন্টা ($1{
m kWh}$) = $3.6 \times 10^{-6}~{
m J}$

এই বিক্রিয়ায় প্রাশ্ত শক্তিকে নিয়নিত্রত উপায়ে উচ্চ চাপের কার্বন ডাই অক্সাইড গ্যাসের অভ্যন্তরীণ শক্তি হিসেবে নিরবচ্ছিন্নভাবে পাস্প করে অন্য পাত্রে নেওয়া হয়। এই উত্তন্ত গ্যাস একটি বিশেষ বাষ্প বয়লারের চারপার্শ্বে ঘুরে বয়লারের ভিতরের বাষ্পকে উত্তন্ত করে যা টার্বাইন ঘুরিয়ে বিদ্যুৎ উৎপাদন করে। নিউক্লীয় বিক্রিয়ায় এক টন ইউরেনিয়াম থেকে যে শক্তি পাওয়া যায় তা দশ লক্ষ্ণ টন কয়লা পুড়িয়ে পাওয়া শক্তির সমান।

পরিবেশের উপর শক্তির রূপান্তরের প্রভাব : নিউক্লীয় বিদ্যুৎ উৎপাদন সাশ্রয়ী হলেও নিউক্লীয় জ্বালানির বর্জ্য অতিমাত্রায় তেজস্ক্রিয় এবং এই বর্জ্যকে নিরাপদ পরিণত করতে হাজার হাজার বছর ধরে সংরক্ষণ করতে হয়। এছাড়া নিউক্লীয় চুল্লীতে উচ্চ তাপমাত্রা ও চাপ তৈরি হয়। তাই একে এমন পদার্থ দিয়ে তৈরি করতে হবে যেন তা সহ্য করতে পারে। কোনো দুর্ঘটনা যে কত মারাত্মক তা আমরা সোভিয়েত ইউনিয়নের (বর্তমানে ইউক্রেনের) চেরনোবিল এবং জাপানের ফুকুশিমা এর অভিজ্ঞতা থেকে জানি। তবে নিউক্লীয় বিদ্যুৎ উৎপাদনে পরিবেশে গ্রিন হাউস গ্যাস কম উৎপন্ন হয়।

নবায়নযোগ্য শক্তির সামান্তিক প্রভাব ও সুবিধা: আমাদের সামান্তিক জীবনে নবায়নযোগ্য শক্তি ব্যবহারের সুদূর প্রসারী প্রভাব রয়েছে। আমাদের দেশে চাহিদার তুলনায় প্রাকৃতিক শক্তি যেমন কয়লা, খনিজ তেল ও প্রাকৃতিক গ্যাসের মজুদ অতি নগণ্য। তাই আমাদের শক্তির প্রয়োজন মেটাতে অমূল্য বৈদেশিক মূদ্রা ব্যয় করে বিদেশ থেকে খনিজ তেল, কয়লা আমদানি করতে হয়। কিন্তু আমাদের দেশে যে সকল নবায়নযোগ্য শক্তির উৎস রয়েছে সেগুলো বিশেষ করে বায়োগ্যাস উৎপাদন ও ব্যবহারে পল্লী অঞ্চলের মানুষকে উদুন্ধ করতে পারলে সহজেই আমাদের পল্লী অঞ্চলের চেহারা বদলে দেওয়া সম্ভব হবে।

বায়ুকল ব্যবহার করে বিদ্যুৎ উৎপাদনের দিকেও আমরা নজর দিতে পারি। গবেষণার মাধ্যমে সৌরশক্তির ব্যবহার সুলভ করতে পারলে আমাদের শক্তির যাবতীয় প্রয়োজন অফুরন্ত এ উৎস থেকে মেটানো সম্ভব হবে।

নবায়নযোগ্য শক্তি ব্যবহারের প্রধান সুবিধাই হচ্ছে—এ উৎস শেষ হয়ে যাওয়ার আশঙ্কা নেই। তাছাড়া পরিবেশ দূষণের হাত থেকে দেশকে বাঁচানো সম্ভব হবে।

৪.৪ শক্তির রূপান্তর

Transformation of energy

শক্তি অহরহ একর্প থেকে অন্যর্পে রূপান্তরিত হচ্ছে। এ মহাবিশ্বে নানা ঘটনা প্রবাহ চলছে শক্তির রূপান্তর আছে বলে। শক্তি একর্প থেকে একাধিকর্পে রূপান্তরিত হলেও মহাবিশ্বের মোট শক্তি ভাঙারের কোনো পরিবর্তন হচ্ছে না। মানুষ, কম্পিউটার কিংবা কোনো যন্ত্রকে কোনো কাজ করতে হলে কিংবা কোনো প্রক্রিয়া বা পরিবর্তন সাধন করতে হলে শক্তির রূপান্তরের প্রয়োজন হয়। একর্পের শক্তিকে অন্যরূপের শক্তি উৎপাদনে ব্যবহার করা যেতে পারে। প্রকৃতপক্ষে, একর্পের শক্তি সারাক্ষণই অন্যান্যরূপের শক্তিতে পরিবর্তিত হচ্ছে। এটিই শক্তির রূপান্তর হিসেবে পরিচিত। যখন কেউ গিটার বাজায় তখন কী হয়? শিল্পীর হাতের আঙুলের পেশি শক্তি কম্পমান তারে যান্ত্রিক শক্তিতে রূপান্তরিত হয় যা সুমধুর মিউজিকর্পে শব্দ শক্তিতে রূপান্তরিত হয়ে আমাদের কানে প্রবেশ করে। যখন কাঠ বা খড়ি পোড়ানো হয় তখন রাসায়নিক শক্তি মুক্ত হয় এবং তা তাপ ও আলোক শক্তিতে রূপান্তরিত হয়। একটি তড়িৎ কোষের অভ্যন্তরে রাসায়নিক বিক্রিয়া ঘটে এবং এই সকল বিক্রিয়ার রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয় যা নানাবিধ কাজে ব্যবহৃত হয়।

একর্পের নির্দিষ্ট পরিমাণ শক্তি অন্যরূপে রূপান্তরিত করলে কতটুকু শক্তি পাওয়া যাবে? শক্তির নিত্যতা বা সংরক্ষণশীলতা নীতি থেকে তা জ্ঞানা যায়। শক্তি যখন একরূপ থেকে অন্যরূপে পরিবর্তিত হয় তখন শক্তির কোনো ক্ষয় হয় না। এক বস্তু যে পরিমাণ শক্তি হারায় অপর বস্তু ঠিক সেই পরিমাণ শক্তি লাভ করে। প্রকৃতপক্ষে আমরা নতুন কোনো শক্তি সৃষ্টি করতে পারি না বা শক্তি ধ্বংসও করতে পারি না। অর্থাৎ বিশ্বের সামগ্রিক শক্তি ভাষ্টারের কোনো তারতম্য ঘটে না। এ বিশ্ব সৃষ্টির প্রথম মুহূর্তে যে পরিমাণ শক্তি ছিল আজও মহাবিশ্বে সেই পরিমাণ শক্তি বর্তমান। এটাই শক্তির অবিনশ্বরতা বা নিত্যতা বা সংরক্ষণশীলতা।

শক্তির সংরক্ষণশীলতা নীতি : শক্তির সৃষ্টি বা বিনাশ নেই, শক্তি কেবল একরূপ থেকে অপর এক বা একাধিকরূপে পরিবর্তিত হতে পারে। মহাবিশ্বের মোট শক্তির পরিমাণ নির্দিষ্ট ও অপরিবর্তনীয়।

শক্তির রুপান্তর: আমরা আগেই বিভিন্ন প্রকার শক্তির কথা বলেছি সেগুলো সকলেই পরস্পরের সাথে সম্পর্কিত। অর্থাৎ কোনো একটা থেকে অন্যটাতে পরিবর্তন সম্ভব। এ পরিবর্তনকে শক্তির রূপান্তর বলে। আসলে প্রায় প্রত্যেক প্রাকৃতিক ঘটনাকেই শক্তির রূপান্তর হিসেবে ধরা যেতে পারে। নিচে শক্তির রূপান্তরের কয়েকটি উদাহরণ দেওয়া হলো:

- ১. যাশিত্রক শক্তির রূপাশ্তর: হাতে হাত ঘষলে তাপ উৎপন্ন হয়। এক্ষেত্রে যাশিত্রক শক্তি তাপ শক্তিতে রূপাশ্তরিত হয়। কলমের খালি মুখে ফুঁ দিলে যাশিত্রক শক্তি শব্দ শক্তিতে রূপাশ্তরিত হয়। পানি যখন পাহাড় পর্বতের উপরে থাকে তখন তাতে বিভব শক্তি সঞ্চিত থাকে। এই পানি যখন ঝরনা বা নদীরূপে উপর থেকে নিচে নেমে আসে তখন বিভব শক্তি গতিশক্তিতে পরিণত হয়। এই পানি প্রবাহের সাহায্যে চাকা ঘুরিয়ে বিদ্যুৎ উৎপাদন করা হয়। এভাবে যাশিত্রক শক্তি তড়িৎ শক্তিতে রূপাশ্তরিত হয়।
- ২. তাপ শক্তির রূপান্তর : বাষ্পীয় ইঞ্জিনে তাপের সাহায্যে বাষ্প উৎপন্ন করে রেলগাড়ি ইত্যাদি চালানো হয়। এখানে তাপ শক্তি যান্দিত্রক শক্তিতে রূপান্তরিত হচ্ছে। বাল্বের ফিলামেন্টের মধ্য দিয়ে তড়িৎ প্রবাহের ফলে তাপ শক্তি আলোক

শক্তিতে রূপান্তরিত হয়। দুইটি ভিন্ন ধাতব পদার্থের সংযোগস্থলে তাপ প্রয়োগ করলে তাপ তড়িৎ শক্তিতে রূপান্তরিত হয়।

- ৩. আলোক শস্তির রুপান্তর: হারিকেনের চিমনিতে হাত দিলে গরম অনুভূত হয়। এখানে আলোক শস্তি তাপ শস্তিতে রূপান্তরিত হচ্ছে। ফটো—ভোলটেইক কোষের উপর আলোর ক্রিয়ায় আলোক শস্তি তড়িৎ শস্তিতে রূপান্তরিত হয়। ফটোগ্রাফিক কাগন্তের উপর আলোর ক্রিয়ায় ফলে আলোক শস্তি রাসায়নিক শস্তিতে রূপান্তরিত হয়।
- 8. রাসায়নিক শক্তির রুপাশ্তর: খাদ্য এবং জ্বালানি যেমন তেল, গ্যাস, কয়লা ও কাঠ হচ্ছে রাসায়নিক শক্তির আধার। রাসায়নিক বিক্রিয়ার মাধ্যমে খাদ্যের শক্তি আমাদের দেহে মুক্ত হয় এবং অন্য শক্তিতে রূপাশ্তরিত হওয়ার সময় আমরা দরকারী কাজ করতে পারি। ইঞ্জিনে বা বয়লারে যখন জ্বালানি পোড়ানো হয় তখন শক্তির রূপাশ্তর ঘটায়। তড়িৎ কোষ ও ব্যাটারিতে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপাশ্তরিত হয়। তড়িৎ শক্তি আবার বাতির ফিলামেন্টে আলোক শক্তি ও তাপ শক্তিতে রূপাশ্তরিত হয়।
- **৫. তড়িৎ শক্তির র্পান্তর :** বৈদ্যুতিক মোটরে তড়িৎ শক্তি যান্ত্রিক শক্তিতে র্পান্তরিত হয়। বৈদ্যুতিক ইন্ত্রি, হিটার ইত্যাদিতে তড়িৎ শক্তি তাপ শক্তিতে র্পান্তরিত হয়। বৈদ্যুতিক বাল্পে তড়িৎ শক্তি তাপ ও আলোক শক্তিতে র্পান্তরিত হয়। টেলিফোন ও রেডিওর গ্রাহক যন্ত্রে তড়িৎ শক্তি শব্দ শক্তিতে র্পান্তরিত হয়। সঞ্চয়ক কোষে তড়িৎ শক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয়। তাড়িতচুন্দকে তড়িৎ শক্তি চৌন্দক শক্তিতে রূপান্তরিত হয়।
- ৬. নিউক্লীয় শক্তির রূপান্তর: নিউক্লীয় সাবমেরিনে নিউক্লীয় শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত করা হয়। নিউক্লীয় চ্ল্লীতে নিউক্লীয় শক্তি অন্যান্য শক্তি বিশেষ করে তড়িৎ শক্তিতে রূপান্তরিত হয়ে আজকাল শক্তির চাহিদা অনেকাংশেই পুরণ করে থাকে।

বৈদ্যুতিক পাওয়ার স্টেশন থেকে বুঝা যায় শক্তি কীভাবে একরূপ থেকে অন্যরূপে রূপান্তর হয়ে আমাদের বাড়ি ঘরে আলো ও তাপ শক্তি দেয়। পাওয়ার স্টেশনে কয়লা ও প্রাকৃতিক গ্যাস পুড়িয়ে রাসায়নিক শক্তি থেকে তাপ শক্তি পাওয়া যায়। টার্বাইনের সাহায্যে তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত করা হয় যা বৈদ্যুতিক জেনারেটরের কুঙলীকে ঘুরায়। এতে তড়িৎ শক্তি উৎপন্ন হয়। বাড়ি ঘরে, কল কারখানায় বৈদ্যুতিক বাতি ও হিটার তড়িৎ শক্তিকে আলো ও তাপ শক্তিতে রূপান্তরিত করে।

আবার আমরা যখন হাতুড়ি দিয়ে আঘাত করে কোনো পেরেককে কাঠের মধ্যে প্রবেশ করাই তখন কোন শক্তি কোন শক্তি কোন কোন শক্তি কোন কোন শক্তি হয়। আমাদের শরীরের রাসায়নিক শক্তি হাতুড়িকে উপরে উঠাতে কৃত কাজে ব্যয় হয় যা হাতুড়ির উচ্চ অবস্থানে বিভব শক্তিরূপে জমা থাকে। যখন হাতুড়ি নিচে নামে তখন এই বিভব শক্তি গতিশীল হাতুড়ির গতিশক্তিতে রূপান্তরিত হয়। এই গতিশক্তি পেরেকটিকে কাঠের মধ্যে প্রবেশ করাতে প্রয়োজনীয় কাজে ব্যবহৃত হয় এবং সাথে সাথে শব্দ শক্তি উৎপন্ন হয় এবং পেরেক, কাঠ ও হাতুড়িতে তাপ শক্তি উৎপন্ন হয়।

শক্তি রূপান্তরিত হওয়ার সময় শক্তি সৃষ্টি বা ধ্বংস না হলেও শক্তির অবনতি ঘটতে পারে। যেমন আলো বা তড়িৎ শক্তির মতো তাপ শক্তির সবটাই আমরা কাজে লাগাতে পারি না।

প্রতিবেদন তৈরি: কৃষি, শিক্ষা ও স্বাস্থ্য বিষয়ে শক্তির ব্যবহার সম্পর্কে একটি প্রতিবেদন তৈরি কর।

৪.৫ ক্ষমতা

Power

ক্ষমতা শব্দটির সাথে আমরা সবাই পরিচিত। দৈনন্দিন জীবনে ক্ষমতা সাধারণত সিম্থান্ত গ্রহণ ও বাস্তবায়নের সাথে সম্পর্কিত। বিজ্ঞানে ক্ষমতা শব্দটি মোটর, পাম্প, ইঞ্জিন ইত্যাদি যন্ত্র তথা কাজ সম্পাদনকারী কোনো কিছুর সাথে সংশ্লিষ্ট। অনেক সময় আমরা কোনো কাজ দুত সমাধা করতে চাই। ধরা যাক, আমরা কোনো বহুতল ভবনের নিচতলার রিজার্ভার বা পুকুর থেকে পানি নিয়ে ছাদের ট্যাংক পানি পূর্ণ করতে চাই। আমরা যদি বালতি দিয়ে পানি বহন করে এ কাজটি করতে যাই তাহলে অনেক সময় লাগবে। আর যদি একটি মোটর বা পাম্পের সাহায্যে সরাসরি ট্যাংকটি পানি পূর্ণ করা হয় তাহলে সময় অনেক কম লাগবে।

কোনো কাজ কখনো দুত করা হয় কখনো ধীরে করা হয়। কত দুত বা কত ধীরে কাজ করা হয় তার পরিমাপ হলো ক্ষমতা। মনে কর রনি ও অনি দুই ক্ষ্মু একটি ভবনের পাঁচতলায় বাস করে। তাদের দুজনের ভর সমান। তারা নিচতলায় লিফটের দরজার সামনে এসে দেখল লিফট নস্ট। তাদের সিঁড়ি দিয়ে উপরে উঠতে হলো। রনির পাঁচ তলায় উঠতে সময় লাগল 40 সেকেন্ড আর অনির লাগল 80 সেকেন্ড। আমরা বলি রনি অনির চেয়ে বেশি ক্ষমতাবান যদিও তারা দুইজনেই একই উচ্চতা উঠার জন্য একই পরিমাণ কাজ করেছে। রনির ক্ষমতা বেশি কারণ সে একই কাজ দুত করেছে। ক্ষমতা হচ্ছে কাজ করার বা শক্তি রূপান্তরের হার। কোনো বস্তু বা ব্যক্তি একক সময়ে কতটুকু কাজ করল তা দ্বারা ক্ষমতা পরিমাপ করা হয়।

ক্ষমতা =
$$\frac{\overline{a}}{\overline{y}}$$

কোনো ব্যক্তি বা যশত্র দ্বারা t সময়ে W পরিমাণ কাজ সম্পন্ন হলে বা শক্তি রূপান্তরিত হলে ক্ষমতা P হবে

$$P = \frac{W}{t} \tag{4.4}$$

ক্ষমতার দিক নেই। কাজেই ক্ষমতা একটি স্কেলার রাশি।

ক্ষমতা
$$= rac{কাজ}{সময়} = rac{বল imes সরণ}{সময়} = rac{ভর imes ভ্রবণ imes সরণ}{সময়}$$

$$=\frac{{\color{red} {\bf ভ}}{\bf s}\times{\color{blue} {\bf স}}{\bf s}{\bf q} \times{\color{blue} {\bf N}}{\bf s}{\bf q} \times{\color{blue} {\bf N}}{\bf s}{\bf q}}{{\color{blue} {\bf N}}{\bf s}{\bf q}^2\times{\color{blue} {\bf N}}{\bf s}{\bf q}}=\frac{{\color{blue} {\bf e}}{\bf s}\times{\color{blue} {\bf N}}{\bf s}{\bf q}^2}{{\color{blue} {\bf N}}{\bf s}{\bf q}^3}$$

$$\therefore [P] = \frac{ML^2}{T^3} = ML^2T^{-3}$$

একক: কান্ডের একককে সময়ের একক দিয়ে ভাগ করে ক্ষমতার একক পাওয়া যায়। যেহেতু কান্ডের একক জুল (J) এবং সময়ের একক হলো সেকেন্ড (s), সূতরাং ক্ষমতার একক হবে জুল/সেকেন্ড (Joule / second)। একে ওয়াট বলা হয়। ওয়াটকে W দিয়ে প্রকাশ করা হয়।

এক সেকেন্ডে এক জুল কাজ করা বা শক্তি রূপান্তরের হারকে এক ওয়াট বলে।

$$1 \text{ W} = \frac{1 \text{ J}}{1 \text{ s}} = 1 \text{ Js}^{-1}$$

প্রবাহিত পানির স্রোত থেকে যাশিত্রক শক্তি সংগ্রহ করে চৌস্বক শক্তির সমন্বয়ে তড়িৎ উৎপাদন করা হয় বলে এ

মডেল তৈরি: পড়স্ত পানির শক্তিকে কাচ্চে লাগিরে টার্বাইন স্থারিরে একটি ডারনামো চালিয়ে জ্বলবিদ্যুৎ উৎপাদন কেন্দ্রের একটি মডেল তৈরি কর। চিত্র: (৪.৬)।

ধরনের তড়িতের নাম জ্বলবিদ্যুৎ। আমাদের দেশে কাশ্তাই বিদ্যুৎ উৎপাদন কেন্দ্রে পানির বিভব শক্তিকে ব্যবহার করে বিদ্যুৎ উৎপাদন করা হয়।

নদী বা সমৃদ্রের পানির জোয়ার—ভাটার শক্তিকে ব্যবহারের প্রচেন্টা মানুষ বহুদিন থেকে চালিয়ে যাচ্ছে। জোয়ার—ভাটার শক্তিকে কাজে লাগিয়ে বিভিন্ন যশত্র চালনার ব্যাপারটি অনেকদিন আগেই উদ্ধাবিত হয়েছে।

ফ্রান্সে জোয়ার—ভাটার শব্ধির সাহায্যে তড়িৎ শব্ধি প্রকল্প সফলতার সাথে কাজ করছে। বর্তমানে পৃথিবীর বিভিন্ন দেশে জোয়ার—ভাটার শব্ধিকে কাজে লাগিয়ে তড়িৎ উৎপাদনের চেন্টা চলছে।

বায়ু শক্তি: পৃথিবী পৃষ্ঠের তাপমাত্রার পার্থক্যের কারণে বায়ু প্রবাহিত হয়। বায়ু প্রবাহজনিত গতিশক্তিকে আমরা যাশ্ত্রিক বা তড়িৎ শক্তিতে রূপাশ্তরিত করতে পারি। শক্তি রূপাশ্তরের এরূপ যশত্রকে বায়ুকল বলে। বায়ু প্রবাহকে কাজে লাগিয়ে প্রাচীনকালের মানুষেরা কুয়া থেকে পানি তোলা, জাহাজ চালানো ইত্যাদি কাজ সম্পাদন করতো। নৌকায় পাল তুলে আজও বায়ু শক্তিকে কাজে লাগানো হয়। বর্তমানে প্রযুক্তি ব্যবহার করে বায়ুকল কাজে লাগিয়ে তড়িৎ উৎপাদন করা হচ্ছে।

ভূ—ভাসীয় শক্তি: ভূ—অভ্যন্তরের তাপকে শক্তির উৎস হিসেবে ব্যবহার করা যেতে পারে। ভূ—অভ্যন্তরের গভীরে তাপের পরিমাণ এত বেশি যে তা শীলাখন্ডকে গলিয়ে ফেশতে পারে। এ গলিত শীলাকে ম্যাগমা বলে। ভূতান্ত্বিক পরিবর্তনের ফলে কখনো কখনো এই ম্যাগমা উপরের দিকে উঠে আসে যা ভূপৃষ্ঠের খানিক নিচে জমা হয়। এ সকল জারগা হট স্পট (Hot spot) নামে পরিচিত। ভূ—গর্ভস্থ পানি এ হট স্পটের সংস্পর্ণে এসে বাক্ষে পরিণত হয়। এই বাক্ষা ভূ—গর্ত আটকা পড়ে যায়। হট স্পটের উপর গর্ত করে পাইপ তুকিয়ে উচ্চ চাপে এই বাক্ষাকে বের করে আনা যায় যা দিয়ে টার্বাইন খুরিয়ে বিদ্যুৎ উৎপাদন সম্ভব। নিউজিল্যান্ডে এ রকম বিদ্যুৎ উৎপাদন কেন্দ্র আছে।

বারোমাস শক্তি: সৌর শক্তির একটি ক্ষুদ্র ভগ্নাংশ যা সবুজ গাছপালা হারা সালোক সংশ্লেষণ প্রক্রিয়ায় রাসায়নিক শক্তিতে র্পাশ্তরিত হয়ে বারোমাসর্পে গাছপালার বিভিন্ন অংশে মজ্দ থাকে। বায়োমাস কাতে সেই সব জৈব পদার্থকে বৃঝায় যাদেরকে শক্তিতে র্পাশ্তরিত করা যায়। মান্যসহ অনেক প্রাণী খাদ্য হিসেবে বায়োমাস গ্রহণ করে তাকে শক্তিতে র্পাশ্তরিত করে জীবনের কর্মকান্ড সচল রাখে। বায়োমাসকে শক্তির একটি বহুমুখী উৎস হিসেবে বিবেচনা করা যায়। জৈব পদার্থসমূহ যাদেরকে বায়োমাস শক্তির উৎস হিসেবে ব্যবহার করা যায় সেগুলো হচ্ছে গাছ—গাছালী, জ্বালানি কাঠ, কাঠের বর্জ্য, শস্য, থানের ত্ব ও ক্ড্যা, লতা—পাতা, পশু পাখির মল, পৌর বর্জ্য ইত্যাদি। বায়োমাস প্রধানত কার্বন ও হাইড্রোজেন হারা গঠিত। নবায়নযোগ্য শক্তির অন্যতম উৎস বায়োমাস।

বায়োমাস থেকে সহজে উৎপাদন করা যায় বায়োগ্যাস। এ গ্যাস জামরা প্রাকৃতিক গ্যাসের বিকল্প হিসেবে রান্নার কাজে এমনকি বিদ্যুৎ উৎপাদনের কাজেও ব্যবহার করতে পারি। এর উৎপাদন পদ্ধতিও বেশ সহজ। একটি আবঙ্গ্ধ পাত্রের মধ্যে গোবর ও পানির মিশ্রণ ১ ঃ ২ অনুপাতে রেখে পচানো হলে বায়োগ্যাস উৎপন্ন হয়। যা নলের সাহায্যে বেরিয়ে

৪.৬ কর্মদক্ষতা

Efficiency

শক্তি রূপান্তরের সহায়তায় আমরা দৈনন্দিন জীবনের প্রয়োজন মেটাই। যেমন পেট্রোলে সঞ্চিত রাসায়নিক শক্তি গতিশক্তিতে রূপান্তরের মাধ্যমে আমরা ইঞ্জিন চালাতে পারি। শক্তির সংরক্ষণশীলতা নীতি অনুসারে কোনো ইঞ্জিন থেকে সেই পরিমাণ শক্তি আমাদের পাওয়া উচিত যে পরিমাণ শক্তি ইঞ্জিনে প্রদন্ত হয়। কিন্তু এটা দেখা যায়, যে পরিমাণ শক্তি ইঞ্জিনে প্রদন্ত হয় সর্বদাই তার চেয়ে কম পরিমাণ শক্তি পাওয়া যায়। এটি প্রধানত হয় এই কারণে যে, ইঞ্জিনে ঘর্ষণ বলের বিরুদ্ধে যে কাজ করতে হয় তা তাপ শক্তিরূপে অপচয় হয়। ইঞ্জিন থেকে যে পরিমাণ শক্তি পাওয়া যায় তাকে লভ্য কার্যকর শক্তি বলে। এক্ষেত্রে শক্তির সমীকরণ দাঁড়ায়:

প্রদত্ত শক্তি = লভ্য কার্যকর শক্তি + অন্যভাবে ব্যয়িত শক্তি।

কোনো যন্ত্রের কর্মদক্ষতা বলতে বুঝায়, যন্ত্রে যে পরিমাণ শক্তি প্রদান করা হয় তার কত অংশ কার্যকর শক্তি হিসেবে পাওয়া যায়। সূতরাং, কর্মদক্ষতা বলতে মোট যে কার্যকর শক্তি পাওয়া যায় এবং মোট যে শক্তি দেওয়া হয়েছে তার অনুপাতকে বুঝায়। একে সাধারণত শতকরা হিসেবে প্রকাশ করা হয়ে থাকে।

কর্মদক্ষতা,
$$\eta = \frac{$$
লভ্য কার্যকর শক্তি $\times 100\%$ (4.5)

একটি সাধারণ বিদ্যুৎ উৎপাদন কেন্দ্রে, অনেক ধাপে শক্তির রূপান্তর ঘটে। এই রূপান্তর কয়লা, তেল, প্রাকৃতিক গ্যাস বা ইউরেনিয়াম থেকে শুরু করে বিদ্যুৎ শক্তি পাওয়া পর্যন্ত চলতে থাকে। দেখা গেছে শক্তির এই রূপান্তরসমূহের ক্ষেত্রে প্রদন্ত শক্তির প্রায় 70 % পর্যন্ত অপচয় হয় এবং তাপ শক্তিরূপে হারিয়ে যায়।

প্রদন্ত শক্তির কেবল 30% শেষ পর্যন্ত ব্যবহারযোগ্য তড়িৎ শক্তিতে রূপান্তরিত হয়। সূতরাৎ আমরা বলতে পারি যে উৎপাদন কেন্দ্রের কর্মদক্ষতা মাত্র 30%।

গাণিতিক উদাহরণ ৪.৫ : একটি 10 N ওজনের বস্তুকে 5 m উচ্চতায় উঠানোর জন্য একটি বৈদ্যুতিক মোটর ব্যবহার কর হলো। এটি 65 J তড়িৎ শক্তি ব্যবহার করে।

- (ক) মোটর কর্তৃক অপচয়কৃত শক্তির পরিমাণ কত?
- (খ) মোটরের কর্মদক্ষতা কত?

(ক) এখানে ব্যয়িত শক্তি
$$=$$
 কৃত কাজ $=$ বন \times সরণ $=$ ওজন \times উচ্চতা $=$ $10~{\rm N}\times 5~{\rm m}$ $=$ $50~{\rm J}$ সুতরাং অপচয়কৃত শক্তি $=$ সরবরাহকৃত শক্তি $-$ ব্যয়িত শক্তি $=$ $65~{\rm J}-50~{\rm J}$ $=$ $15~{\rm J}$

(খ) কর্মদক্ষতা,
$$\eta=\frac{}{}$$
 লভ্য কার্যকর শক্তি $\times 100~\%$ $=\frac{50J}{65J}\times 100\%$ $=76.92\%$

অনুসন্ধান 8.১

সিঁড়ি দিয়ে দৌড়ে উঠে শিক্ষার্থীর ক্ষমতা নির্ণয়।

উদ্দেশ্য : ক্ষমতা নির্ণয় এবং নিজের বিভিন্ন সময়ে প্রয়োগকৃত ক্ষমতার তুলনা এবং অপরের ক্ষমতার সাথে তুলনা । যদত্ত্বপাতি : থামা ঘড়ি।

কান্ধের ধারা :

- ১. একটি দালান ঠিক কর (তিনতলা থেকে ছয়তলার মধ্যে হলে ভালো হয়)। সেটি তোমার স্কুল, বাসা বা যেকোনো ভবন হতে পারে।
- ২. এই দালানের ছাদে উঠার সিঁড়ির সংখ্যা গণনা কর।
- ৩. একটি সিঁড়ির উচ্চতা স্কেলের সাহায্যে নির্ণয় করে তাকে সিঁড়ির সংখ্যা দিয়ে গুণ করে ছাদের মোট উচ্চতা নির্ণয় কর।
- একটি ওয়েট মেশিনের (ওজন মাপার যল্ত্র) সাহায্যে তোমার ভর নির্ণয় কর।
- তুমি যত জোরে পারো দৌড়ে ছাদের উপর উঠ।
- ৬. থামা ঘড়ির সাহায্যে ছাদে উঠার সময় নির্ণয় কর।
- ৭. এরপর তুমি আস্তে দৌড়ে, জোরে হেঁটে, স্বাভাবিকভাবে হেঁটে এবং আস্তে আস্তে হেঁটে একইভাবে ছাদে উঠার সময় নির্ণয় কর।
- ৮. নিশ্লোক্ত ছক অনুসারে প্রতিক্ষেত্রে তোমার ক্ষমতা বের কর।

অনুসন্ধানের ছক

তোমার ভর, m= kg ছাদের উচ্চতা, h= m অভিকর্ষজ ত্বরণ, $g=9.8~{\rm m~s}^{-2}$

পাঠ	দৌড়ের প্রকৃতি	ছাদে উঠার সময়, <i>t</i> (s)	ক্ষমতা = $\frac{mgh}{t}$ (W)
1	ন্ধোরে দৌড়ে		
2	ত্মাস্তে দৌড়ে		
3	জোরে হেটে		
4	স্বাভাবিক ভাবে হেটে		
5	আম্তে হেটে		

- ৯. বিভিন্ন সময় তোমার ক্ষমতা বিভিন্ন হলো কেন, তা আলোচনা কর।
- ১০. একইভাবে প্রাপ্ত তোমার বন্ধুদের ক্ষমতার সাথে তোমার ক্ষমতার তুলনা কর।
- তোমার ক্লাশের সবচেয়ে বেশি এবং সবচেয়ে ক্ষমতা প্রয়োগকারী পাঁচজন শিক্ষার্থীর নাম লিখ।

অনুসন্ধান – ৪.২

বায়োমাস থেকে বায়োগ্যাস উৎপাদন

উদ্দেশ্য : নবায়নযোগ্য শক্তির ব্যবহার প্রদর্শন।

যশ্বপাতি/উপকরণ: গোবর, চাউলের তুষ,কাঠের গুঁড়ো, প্লাস্টিক বা কাচের বড় বোতল (বা ল্যাবরেটরিতে থাকলে কনিক্যাল ফ্লাক্স), কর্ক, নল ইত্যাদি ।

কাচ্ছের ধারা :

- ১. বোতলের মধ্যে গোবর, তুষ,কাঠের গুঁড়োর মিশ্রণ এবং পানি ১ ঃ ২ অনুপাতে নাও।
- ২. এবার নল লাগানো কর্ক দিয়ে বোতলের বা ফ্লাব্সের মুখ বন্ধ করে দাও।
- নলের মুখটিও কর্ক দিয়ে ভালো করে বন্ধ করে দাও।
- 8. বোতল বা ফ্লান্সটিকে ঘরের এক কোণে রেখে দাও।
- ৫. দুই এক দিন পর নলের মুখের কর্ক সরিয়ে দেখ গ্যাস বের হচ্ছে কিনা।
- ৬. গ্যাস বের হলে নলের মুখে জ্বলন্ত দিয়াশলাইয়ের কাঠি ধর।।
- ৭. গ্যাসে আগুন জ্বলবে।

जनू नी ननी

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উন্তরের পাশে টিক $(\sqrt{})$ দাও

- ১। কাজের একক কোনটি ?
 - (ক) জুল

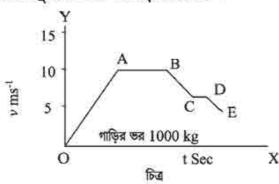
(খ) নিউটন

(গ) কেলভিন

- (ঘ) ওয়াট
- ২। একটি বস্তুকে টান টান করলে এর মধ্যে কোন শক্তি জমা থাকে ?
 - (ক) গতিশক্তি

(খ) বিভব শক্তি

(গ) তাপ শক্তি


- (ঘ) রাসায়নিক শক্তি
- ৩। m ভরের একটি বস্তুকে 20 m, 30 m, 40 m ও 50 m উপরে রাখা হলো। কোন অবস্থানে তার বিভব শক্তি সবচেয়ে বেশি ?
 - (**季**) 20 m

(খ) 30 m

(গ) 40 m

(되) 50 m

निक्रिय राज्य किया चम्त्राद्ध ८ थ १ मर श्रान्त्र केखर गांव ।

- ৪। শেখ চিত্রের কোন বংশে কো সমরের সমানুগাতে বৃশ্বি পার
 - (취) OA 백업에

(4) AB अध्य

(4) CD पश्टम

(च) DE वद्य

- থ। সর্বোচ্চ গতিশক্তি কত ?
 - (季) 1.25×10⁵ J

(4) 5 × 10 4 J

(4) 1.25 × 10 4 J

- (4) 6.2 × 10 3 J
- ৬। শক্তির সংরক্ষণশীশতা নীতি থেকে পাওয়া যায় 🗕
 - (i) শব্রির সৃষ্টি ও বিনাশ নাই, মহাবিশ্বের মোট শব্রি নির্দিন্ট ও অপরিবর্তনীয়।
 - (ii) অনবায়নবোগ্য শক্তি দুক্ত নিঃশেষ হয়ে বাবে, ভাই নবায়নবোগ্য শক্তি ব্যবহার করতে হবে।
 - (iii) শক্তিকে রক্ষা করতে এর কার্যকর ব্যবহার এবং সিস্টেম লগ কমানো অরুরি ।

নিচের কোনটি সঠিক

(क) i

(¶) ii

(4) iii

(V) i, ii iii

ধ. সৃত্তদশীল প্ৰশ্ন

- ১। 40 kg ভরের একটি বালক এবং 60 kg ভরের একজন যুবক একটি ভবনের নিচতলা থেকে এক সাথে দৌড় শুরু করে দৌড়ে একই সময়ে ছাদের একই জায়গায় পৌছালেন। দৌড়ের সময় উভয়ের বেল ছিল 30 m/min।
 - (ক) ক্ষমতা কি ?
 - (খ) 50 J কাজ কাডে কী বুবার ?
 - (গ) যুককের গতিশক্তি নির্ণয় কর
 - (य) ছাদে উঠার ক্ষেত্রে দুইজনের ক্ষমতা সমান ছিল কিনা গাণিতিক বৃদ্ধিসহ বাচাই কর।

গ. সাধারণ প্রশ্ন

১। একটি দেয়াশলাইয়ের কাঠি দেয়াশলাই বঙ্গে $5~\mathrm{N}$ বলে ঘষা হলো। কাঠিটিকে $5~\mathrm{cm}$ টানা হলো।

- (ক) কাঠি ঘষাতে কত শক্তি ব্যয় হলো ?
- (খ) কাঠি টানতে যদি 0.5 s সময় লাগে তাহলে কত ক্ষমতা লাগল ?
- ২। একটি জলবিদ্যুৎ প্রকল্পের রিজার্ভার সমুদ্র সমতল থেকে $800~\mathrm{m}$ উঁচুতে এবং পাওয়ার স্টেশনটি $250~\mathrm{m}$ উঁচুতে অবস্থিত। রিজার্ভারের পানি পাইপের মাধ্যমে এসে পাওয়ার স্টেশনের টার্বাইন ঘুরায়। রিজার্ভারে 2×10^8 লিটার পানি আছে। যদি 1 লিটার পানির ভর $1~\mathrm{kg}$ হয়, তবে রিজার্ভারের পানিতে কত বিভব শক্তি সঞ্চিত আছে।
- ৩। $40~{
 m kg}$ ভরের এক বালক সিড়ি দিয়ে $12~{
 m s}$ –এ ছালে উঠে। সিড়িতে ধাপের সংখ্যা $20~{
 m lb}$ এবং প্রতিটি ধাপের উচ্চতা $20~{
 m cm}$ ।
 - (ক) ঐ বালকের ওজন কত ?
 - (খ) বালকটি মোট কত উচ্চতায় আরোহণ করেছিল ?
 - (গ) ছাদে উঠতে সে কত কাজ করল ?
 - (ঘ) সিড়ি দিয়ে দৌড়ে উঠতে সে কত ক্ষমতা কাজে লাগাল ?
- ৪। যে সকল পাওয়ার স্টেশন জীবাশা জ্বালানি ব্যবহার করে তাদের চেয়ে নিউক্লীয় শক্তি উৎপাদনের একটি মস্তবড় সুবিধা হচ্ছে যে, এতে গ্রিনহাউস গ্যাস উৎপন্ন হয় না।
 - (ক) নিউক্লীয় শক্তি ব্যবহারে অন্যান্য সুবিধাগুলো কী কী ?
 - (খ) নিউক্লীয় শক্তি ব্যবহারে অসুবিধাগুলো কী কী ?

পৰ্কম অধ্যায়

পদার্থের অবস্থা ও চাপ

PRESSURE AND STATES OF MATTER

খোমরা পদার্থের তিনটি অকথার কথা জানি-কঠিন, তরল ও বায়বীয়। পদার্থের আরও একটি অকথা আছে যার নাম প্রাজমা। তরল ও বায়বীয় পদার্থ সহজে প্রবাহিত হতে পারে বলে এদেরকে প্রবাহী বলে। প্রবাহী চাপ প্রদান করে। প্রবাহীর চাপকে কাজে লাগিয়ে অনেক কাজ সহজে করা যায়। পদার্থের একটি বিশেষ ধর্ম হলো স্থিতিস্থাপকতা। বর্তমান অধ্যায়ে আমরা এ সব বিষয় নিয়ে আলোচনা করব।

এই অধ্যার গঠি শেবে আমরা-

- কা ও ক্ষেত্রফলের পরিবর্তনের সাঝে চাপের পরিবর্তন ব্যাখ্যা করতে পারব।
- স্থির ভরলের মধ্যে কোনো কিলুতে চাপের রালিমালা পরিমাপ করতে পারব।
- তরলে নিমজ্জিত কম্তুর উর্ধ্বমুখী চাপের অনুভূতি ব্যাখ্যা করতে পারব।
- গ্যাসকেশের সূত্র ব্যাখ্যা করতে পারব।
- প্যাসকেশের সূত্রের ব্যবহারিক ক্রিয়া প্রদর্শন করতে পারব।
- ৬. আর্কেমিডিসের সূত্র ব্যাখ্যা করতে পারব।
- ৭. ঘনত্ব ব্যাখ্যা করতে পারব।
- ৮. দৈনন্দিন জীবনে ঘনত্ত্বের ব্যবহার ব্যাখ্যা করতে পারব।
- কভূ কেন পানিতে ভাসে তা ব্যাখ্যা করতে পারব।
- ১০. বাংলাদেশে নৌ পথে দুর্ঘটনার কারণ বিশ্লেষণ করতে পারব।
- ১১. বায়ুমগুলের চাপ ব্যাখ্যা করতে পারব।
- ১২. তরণ স্তম্পের উচ্চতা ব্যবহার করে বারুমন্ডলীর চাপ পরিমাপ করতে পারব।
- ১৩. উচ্চতা বৃন্ধির সাথে বায়ুমন্ডলের চাপের পরিবর্তন বিশ্লেষণ করতে পারব।
- ১৪. আবহাওয়ার উপর বায়ুমন্ডলীয় চাপের পরিবর্তন বিশ্রেষণ করতে পারব।
- ১৫. পীড়ন ও বিকৃতি ব্যাখ্যা করতে পারব।
- ১৬. হ্রকের সূত্র ব্যাখ্যা করতে পারব।
- ১৭. পদার্ধের আপবিক গভিতত্ত্ব ব্যাখ্যা করতে পারব।
- ১৮. পদার্থের প্রাজ্ঞমা অকম্বা ব্যাখ্যা করতে পারব।

भग**ं**बिखान

৫.১ চাগ ও ক্ষেত্ৰকৰ

Pressure and Area

হাইবিল জুকা গরে কেউ নরম মাটির উপর দিরে হটিলে জুকা মাটির মধ্যে চুকে বার। আবার বদি কেউ চ্যাপ্টা জ্পাধরালা জুডা গরেন ভবে ভা মাটিভে চুকে না। চাগের ডারডয়ের কারণে বে এটা হয় ভা জামরা দেখব।

Bul: 6.3

কোনো বস্তুর প্রতি একক ক্ষেত্রকলের উপর সম্পতাবে প্রবৃদ্ধ কাকে চাপ বগে। ধরা যাক A ক্ষেত্রকলের উপর ক্রিয়ারড সম্ভাবে প্রবৃদ্ধ কন F

ভাহলে চাপ,
$$p=rac{F}{A}$$
 অৰ্থাৎ, চাপ $=rac{\overline{qq}}{\overline{qq}}$ (5.1)

গক্ষণীয় বে, একই বন্দের ক্ষেত্রে ক্ষেত্রকন A বন্ধ কয় হয়, চাপ p ভত বেশি হয় এবং একই ক্ষেত্রকনের ক্ষেত্রে কন F বন্ধ বেশি হয়, চাপ p ভত বেশি হয়।

डिगास्ताण

- একটি শেরেকের স্চালো মৃথের ক্ষেত্রকল পুব কম। ভাই কাঠ জাতীর কোনো তলের উপর স্চালো মৃথিটি রেখে
 পেরেকের চতত্বা মালায় আঘাত করলে স্চালো মাধার কারণে কাঠের তলের উপর অপেকাকৃত বেশি চাপ পড়ে,
 কলে পেরেকটি সহজেই বস্কৃটির মধ্যে দূকে বার।
- ছুরির ধারালো গ্রান্টের ক্ষেত্রকল পুর কম। ভাই কোনো ক্রম্ভুর উপর ধারালো গ্রান্ডটিকে ধরে কল প্রয়োগ করলে ছুরির প্রান্ত ব্যানর বস্তুর উপর বেশি চাপ পড়ে। ফলে বস্পুটি সহজেই কাটা যায়।

নিছে করা : একটি তীক্ষ্ম ধারালো আলপিন এবং একটি ভোতা আলপিন নিয়ে কাগজ বিদ্র কর। কোনটি দিয়ে ছিদ্র করা সহজ্ঞ ব্যাখ্যা কর।

তীক্ষ ধারালো আলপিনের চওড়া মাধার বল দিলে সরু মাধার দারা বেশি চাল প্রয়োগ করা যায়।

ভৌভা আলশিনের চণ্ডড়া মাঝার বল দিরে ভোঁতা মাঝার হারা ভঙ বেশি চাল প্রয়োগ করা বার লা। কলে ধারালো আলশিন দিরে কার্লন্ত হিন্দ্র করা সহজ।

ষাচাই কর : সমান ইটের রাজ্যর খালি গামে ইটো আর ইটের খোরার উপর দিয়ে ইটো। কোনটি কঠসাধ্য। বাাধ্যা কর :

চাপের একক

বলের একককে ক্ষেত্রফলের একক দিয়ে ভাগ করলে চাপের একক পাওয়া যায়। অতএব চাপের একক $N\ m^{-2}$ । একে প্যাসকেল (Pa) বলে।

প্রতি 1m^2 ক্ষেত্রফলের উপর 1N বল লম্বভাবে ক্রিয়া করলে যে চাপ হয় তাকে 1Pa বলে।

গাণিতিক উদাহরণ ৫.১ : জুতা পায়ে মাটিতে দাঁড়িয়ে থাকা একজন মহিলার ভর $50~{
m kg}$ । তার জুতার তলার ক্ষেত্রফল $200~{
m cm}^2$ হলে মাটিতে জুতার চাপ বের কর।

আমরা জানি

চাপ,
$$p = \frac{F}{A} = \frac{W}{A}$$

$$= \frac{490 \text{ N}}{200 \times 10^{-4} \text{ m}^2} = 2.45 \times 10^4 \text{ Pa}$$

দেওয়া আছে, ভর,
$$m=50~{\rm kg}$$

বল, $F=W=mg=50~{\rm kg}\times 9.8~{\rm ms}^{-2}$
 $=490~{\rm N}$
জুতার তলার ক্ষেত্রফল, $A=200~{\rm cm}^2$
 $=200{\times}10^{-4}~{\rm m}^2$

৫.২ স্থির তরশের মধ্যে কোনো বিন্দুতে চাপ

Pressure at a point in a liquid at equlibrium

তরল পদার্থের ভিতরে কোনো বিন্দুতে চাপ বলতে ঠিক ঐ বিন্দুর চারদিকে প্রতি একক ক্ষেত্রফলের উপর লম্বভাবে অনুভূত বলকে বুঝায়। ৫.২ নং চিত্রে একটি পাত্রে কিছু পরিমাণ তরল পদার্থ আছে।

তরলের অভ্যন্তরে h গভীরতায় B বিন্দুতে চাপ নির্ণয় করতে হবে। B বিন্দুতে তরলের চাপ নির্ণয়ের জন্য B বিন্দুকে

ভূমির উপর একটি বিশ্দু ধরে h উচ্চতার একটি তরলভর্তি সিলিন্ডার কল্পনা করা যাক।

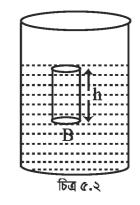
ধরা যাক, সিলিভারের ভূমি তথা তরলের ক্ষেত্রফল = A

তরলের ঘনত্ব = ρ

তরলের মুক্ততল থেকে B বিন্দুর গভীরতা = hঅভিকর্যজ ত্বরণ = g

আমরা জানি , চাপ $= \frac{বল}{ফেত্রফল}$

এখানে \mathbf{A} ক্ষেত্রফলের উপর প্রযুক্ত বল = তরলের ওজন


= তরলের আয়তন × ঘনত্ব × g


= তরলের ক্ষেত্রফল imes তরলের গভীরতা imesঘনত্ব imes g

 $= Ah\rho g$

$$\therefore$$
 চাপ, $p=\frac{Ah\rho g}{A}$
বা চাপ, $p=h\rho g$
আবার যেহেতু g ধ্রবক তাই, $p\propto h\rho$

অর্থাৎ স্থির তরলের অভ্যন্তরে কোনো বিন্দুতে চাপ ঐ বিন্দুর গভীরতা ও ঘনত্বের চিত্র ৫.৩ সমানুপাতিক। সুতরাং তরলের গভীরতা বাড়লে চাপ বাড়ে এবং ঘনত্ব বাড়লেও চাপ বাড়ে। গভীরতা বাড়লে চাপ বাড়ে বিধায় চিত্রে বেশি গভীরতার ছিদ্র থেকে নির্গত তরলের বেগ বেশি (চিত্র ৫.৩)।

গাণিতিক উদাহরণ ৫.২ : একটি পাত্রে কেরোসিন আছে। কেরোসিনের উপরিতল থেকে $75~{
m cm}$ গভীরে কোনো কিন্দুতে চাপের মান নির্ণয় কর। কেরোসিনের ঘনত্ব $800~{
m kg~m}^{-3}$ । আমরা জানি,

$$p = h \rho g$$
 $= 0.75 \text{ m} \times 800 \text{ kg m}^{-3} \times 9.8 \text{ ms}^{-2} = 5880 \text{ Pa}$
উ: 5880 Pa

তরকে

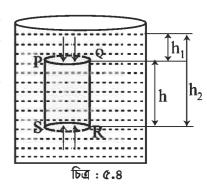
দেওয়া আছে' তরলের গভীরতা, $h=75~{
m cm}=0.75~{
m m}$ তরলের ঘনত্ব, $ho=800~{
m kg~m}^{-3}$ চাপ p=?

৫.৩ প্লবতা

Buoyancy

যে পদার্থ প্রবাহিত হয় বা হতে পারে তাকে প্রবাহী (fluid) বলে। তরল ও বায়বীয় এ দুই শ্রেণির পদার্থ প্রবাহীর অন্তর্ভুক্ত। প্রবাহীর চাপ: কোনো তলে স্থির অবস্থায় থেকে প্রবাহী তার প্রতি একক ক্ষেত্রফলে লম্বভাবে যে বল প্রয়োগ করে তার মানকে প্রবাহীর চাপ বলে। যদি একটি তলের ক্ষেত্রফল A এবং প্রবাহী কর্তৃক লম্বভাবে প্রযুক্ত বল F হয় তাহলে চাপ,

$$p = \frac{F}{A}$$


প্লবতা : পানিপূর্ণ একটি কলসিকে পানির মধ্যে সরানো যত সহজ, পানিতে না রেখে সরানো তত সহজ নয়। পানির মধ্যে ডুবন্ত অবস্থায় কলসিটি বেশ হালকা মনে হয় কারণ কলসির উপর একটি উর্ধ্বমুখী বল কাজ করে। তরল বা বায়বীয় পদার্থে আর্থনিক বা সম্পূর্ণভাবে নিমজ্জিত কোনো বস্তুর উপর তরল বা বায়বীয় পদার্থ লম্বভাবে যে উর্ধ্বমুখী লব্ধি বল প্রয়োগ করে তাকে প্লবতা বলে। প্লবতার মান বস্তুর নিমজ্জিত অংশ কর্তৃক অপসারিত তরল বা বায়বীয় পদার্থের ওজনের সমান হয়।

প্রবতার মান

তরলের মধ্যে কোনো কঠিন বস্তুকে নিমচ্জিত করলে বস্তুর প্রতি বিন্দুতে সর্বমুখী চাপ অনুভূত হবে। ধরা যাক A প্রস্থাচ্ছেদের এবং h উচ্চতার একটি সিলিভার PQRS। এটা ρ ঘনত্বের প্রবাহীতে সম্পূর্ণ নিমচ্জিত আছে (চিত্র : α .8)। তরলের মুক্ত তল থেকে সিলিভারের উপরের এবং নিচের পৃষ্ঠের গভীরতা যথাক্রমে h_1 ও h_2

সুতরাং
$$h=h_2$$
 - h_1

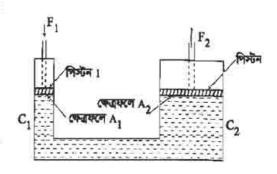
সিলিন্ডারের উপরি পৃষ্ঠ PQ—এ তরল কর্তৃক নিমুমুখী বল , $F_1=Ah_1 \rho g$ সিলিন্ডারটির নিমু পৃষ্ঠ SR— এ তরল কর্তৃক উর্ধ্বমুখী বল , $F_2=Ah_2 \, \rho g$ সিলিন্ডারের বক্রপৃষ্ঠে তরল কর্তৃক প্রযুক্ত পার্শ্বচাপজনিত বল পরস্পর সমান ও বিপরীতমুখী বিধায় নাকচ হয়ে যায়।

$$=F_{2}$$
- F_{1}
 $=Ah_{2}
ho g-Ah_{1}
ho g$
 $=A(h_{2}-h_{1})
ho g$
 $=Ah
ho g$
 $=(hA)
ho g$
 $=V
ho g, [V=hA=$ সিলিভারের আয়তন]
 $= 3
ho g$ কর্তৃক অপসারিত প্রবাহীর ওজন।

সূতরাং নিমচ্জিত বস্তুর উপর ক্রিয়ারত উধর্ব মুখী বল বা প্লবতা বস্তু কর্তৃক অপসারিত প্রবাহীর ওজনের সমান। এই উধর্বমুখী বলের জন্যই তরলে নিমচ্জিত বস্তু ওজন হারায় বলে মনে হয়।

৫.৪ প্যাসকেলের সূত্র

Pascal's Law


কোনো ভাবন্ধ ভরণ বা বারবীর পদার্থের কোনো ভংগে চাপ প্রয়োগ করলে সেই চাপ সবদিকে সঞ্চালিত হয়। প্যাসকেশ চাপের এ সঞ্চালন সম্পর্কে নিম্নোক্ত সূত্র প্রদান করেন—

আবন্ধ পাত্রে তরণ বা বায়বীয় পদার্থের কোনো ভংশের উপর বাইরে থেকে চাপ প্রয়োগ করলে সেই চাপ কিছু মাত্র না কমে তরণ বা বায়বীয় পদার্থের সবদিকে সমানভাবে সঞ্চালিত হয় এবং তরণ বা বায়বীয় পদার্থের সংস্থা পাত্রের গায়ে শব্দভাবে ক্রিয়াকরে।

প্যাসকেলের সূত্রের ব্যবহারিক ক্রিয়া : বলবৃন্ধিকরণ

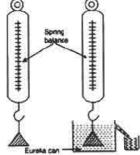
আবন্ধ তরল পদার্থের ক্ষুদ্রতম অংশের উপর পিস্টন হারা কোনো কল প্রয়োগ করলে এর বৃহস্তম পিস্টনে সেই বলের বহুগুণ বেশি কল প্রযুক্ত হতে পারে। একে বল বৃশ্বিকরণ নীতি বলে।

ধরা যাক, C_1 ও C_2 দুইটি সিশিভার (চিত্র ৫.৫)। এদের প্রশক্তেদের ক্ষেত্রকল বধাক্রমে A_1 ও A_2 । সিশিভার দুইটি একটি নশ যারা সংখ্রু এবং প্রভ্যেক সিশিভারে একটি করে পিস্টন নিচ্ছিদ্রভাবে লাগানো আছে। এখন সিশিভার দুইটি যেকোনো ভরণ পদার্থে পূর্ব করে যদি ছোট পিস্টনে F_1 বল প্রয়োগ করা হয় ভাহলে ঐ পিস্টনে অনুভূত চাপের মান $\frac{F_1}{A_1}$ । প্যাসকেশের

विज: ए.ए

সূত্রানুসারে এ চাপ তরল পদার্থ দ্বারা সবদিকে সঞ্চালিত হবে। সূতরাং বড় পিস্টনে প্রযুক্ত উর্ধ্বচাপ $\frac{F_1}{A_I}$ হবে। এ চাপের জন্য বড় পিস্টনে অনুজ্জ উর্ধ্বমুখী বল হবে, চাপ imes ক্ষেত্রকল বা $\frac{F_1}{A_I} imes A_2$ এর সমান। সূতরাং বড় পিস্টনে অনুজ্জ উর্ধ্বমুখী বল F_2 হলে,

$$F_2 = \frac{F_1}{A_1} \times A_2$$


$$\therefore \frac{F_2}{F_1} = \frac{A_2}{A_1}$$
(5.3)

কাজেই বড় পিন্টনের প্রস্থাছেদের ক্ষেত্রফল যত বেশি হবে বলও তত বেশি অনুভূত হবে। ছোট পিন্টনের চেয়ে বড় পিন্টন বদি 100 গুণ বড় হয় তাহলে ছোট পিন্টনে 1 নিউটন বল প্রয়োগ করলে বড় পিন্টনে 100 নিউটন ঊর্ধ্বযুখী কল অনুভূত হবে।

৫.৫ আর্কিমিডিসের সূত্র

Archemedes' Law

আমাদের প্রাত্যহিক জীবনের অভিজ্ঞতা থেকে দেখতে পাই, যেকোনো কঠিন কন্তৃকে পানিতে ভ্রালে হান্ধা বলে মনে হয়। এর কারণ ভূকত কন্তৃর উপর একটা উর্ধ্বমূখী কল বা প্রবতা কাজ করে। খ্রিউপূর্ব ভূতীয় শতানীতে প্রিক দার্শনিক আর্কিমিডিস আবিষ্কার করেন যে, কোনো বস্তুকে স্থির তরল অথবা বায়বীয় পদার্থে আর্থশিক বা সম্পূর্ণ ভ্রালে বস্তুটি কিছু ওজন হারায় বলে মনে হয়। এই হারানো ওজন বস্তুটির দারা অপসারিত তরল বা বায়বীয় পদার্থের ওজনের সমান।

विद्या : ए.%

পরীক্ষণ: একটি বস্তু নাও যার ওজন জানা। এবার বস্তুটিকে একটি হালকা সুতোয় বেঁধে কানায় কানায় পানি ভর্তি বড় বিকারের মধ্যে ডুবাও। এর ফলে কিছু পানি উপচে পড়বে। পানিতে নিমচ্জিত অবস্থায় বস্তুটির ওজন নাও। জানা ওজন থেকে এই ওজন বিয়োগ করে আপাত ওজন হ্রাস বের কর। এবার উপচে পড়া পানির ওজন বের কর। দেখা যাবে বস্তুর ওজনের আপাত হ্রাসের পরিমাণ অপসারিত তরলের ওজনের সমান। এভাবে আমরা আর্কিমিডিসের নীতির একটা সহজ প্রমাণ পেতে পারি।

হিসাব কর : একটি আয়তাকার ব্লকের তলদেশের ক্ষেত্রফল $25~{
m cm}^2$, একে পানির মধ্যে ডুবানো হলো। পানির ঘনত্ব $1000~{
m kg}~{
m m}^{-3}$ । পানির উপরিতল থেকে ব্লকের উপরের পৃষ্ঠের গভীরতা $=5~{
m cm}$, ব্লকের উচ্চতা $2~{
m cm}$. হলে

- ১। ব্লকের উপরিতলে পানির চাপ P_1 বের কর
- ২। ব্লকের তলদেশে পানির চাপ P_2 বের কর
- ৩। ব্লকের উপরিতলে পানি কী পরিমাণ বল প্রয়োগ করবে?
- 8। ব্লকের নিমুতলে পানি কী পরিমাণ বল প্রয়োগ করবে? ফলাফলে তোমার মন্তব্য লিখ।

৫.৬ ঘনত্ব

Density

কোনো বস্তু যে জায়গা জুড়ে থাকে তাকে এর আয়তন বলে। সমান আয়তনের এক টুকরা কর্ক আর এক টুকরা লোহা কি সমান ভারী? আসলে আয়তন সমান হলেও যার ঘনত্ব বেশি সেটি ভারী আর যার ঘনত্ব কম সেটি হালকা। কোনো বস্তুর একক আয়তনের ভরকে তার উপাদানের ঘনত্ব বলে। ঘনত্ব পদার্থের একটি সাধারণ ধর্ম। ঘনত্ব বস্তুর উপাদান ও তাপমাত্রার উপর নির্ভরশীল।

ঘনত্বকে ho ঘারা প্রকাশ করা হয়। m ভরের কোনো বস্তুর আয়তন V হলে, ঘনত্ব ho হবে

$$\rho = \frac{m}{V} = \frac{\text{বস্তুর ভর}}{\text{বস্তুর আয়তন}}$$
খনত্বের একক kg m⁻³

কান্ধ: দুটি বোতল নাও যাদের আয়তন সমান। একটি বোতল পানি দ্বারা ভর এবং একটি মধু দ্বারা পূর্ণ কর। হাত দিয়ে উঠাও। কোনটি ভারী মনে হচ্ছে?

মধু ভর্তি বোতলটি বেশি ভারী মনে হবে কারণ মধুর ঘনত্ব বেশি।

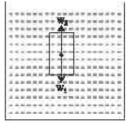
কয়েকটি পদার্থ ও তাদের ঘনত্ব :

পদার্থ	ঘনত্ব (kg m ⁻³)	পদার্থ	ঘনত (kg m ⁻³)
বায়ু	1.29	পানি (4 ⁰ Cএ)	1000
কৰ্ক	250	লো হা	7800
পারদ	13600	রুপা	10500
বরফ	920	সোনা	19300

দৈনশিন জীবনে ঘনত্বের ব্যবহার:

বিভিন্ন অনুষ্ঠানের উদ্বোধনীতে বেশুন উড়ানো হর। এই বেশুনের মধ্যে হাইছ্রোজেন গাস থাকে। হাইছ্রোজেন প্যানের খনস্ক বায়ুর খনস্কের চেয়ে বেশ কম। ভাই এই গ্যাসভর্তি ত্থাপকা বেশুন সহজে উপরের দিকে উঠে যার। বিদ্যুৎ চলে পেলে আমরা অনেকেই আই.পি.এস ব্যাবহার করে থাকি। এডে বড় ব্যাটারি থাকে। গাড়িডে বা মাইকেও অনুর্গ ব্যাটারি থাকে বাদেরকে সঞ্চরী কোব বলে। এই সকল কোষে ব্যবভূত সাশক্তিরিক এসিডের ছনত্ব $1.5 imes 10^3$ $m kg~m^{-3}$ থেকে $1.3{ imes}10^3~
m kg~m^{-3}$ । হাইছোমিটার দিয়ে মাঝে মাঝে মাঝে মেশে দেখতে হয়। মনস্ক বেশি হলে কোবটা নক্ট হয়ে যায়। এ জন্য মাঝে মধ্যে প্রয়োজনীয় পানি দিয়ে ঘনত্ব ঠিক রাণতে হয়।

ভাগো ডিম গানিতে ভূবে বার কিম্ছু গঢ়া ডিম গানিতে ভাসে। গঢ়া ডিমের যনত্ব গানির চেরে কম বলে ভা ভাসে। পাঁশিক্তিক উদাবরণ ৫.৩: 2 m² আরতনের তরবের তর 2000 kg হলে তরবের খনত্ব কত?


৫.৭ বস্তুর ভাসন ও নিমন্ত্রন

Floatation and immersion of a body

ম্পির জরলে কোনো কম্ভূকে ছেড়ে দিলে কম্ভূটির উপর একই সঙ্গো দুইটি কা ক্রিয়া করে—

- কস্তুর গুজন মা, খাড়া নিচের দিকে ক্রিয়া করে
- নিমক্ষিত কম্পূর উপন ভরগের প্লবতা 172 উলম্বভাবে উপরের দিকে ঞিয়া করে। কতুর ভাসন ও নিমজ্জনের কেত্রে তিনটি অবস্থার সৃষ্টি হতে পারে–
- যদি $W_1>W_2$ হয়, অর্থাৎ কভূয় ওজন বলি কভূ কর্তৃক অপসারিত তরশের ওজন অপেক্ষা বেশি হয় তাহলে কম্ভূ তরলে ডুবে যাবে। কম্ভূটি নিরেট হলে এক্ষেত্রে কম্ভূর খনস্থ তরকের খনত্ত্বে চেরে বেশি হয়।
- যদি $W_I=W_2$ হয়, অধাৎ কন্দুর ওজন বদি কন্দু কর্তৃক অপসারিত তরলের গজনের সমান হর তাহলে বস্তৃটি তরলে সম্পূর্ণ নিমঞ্জিত অবস্থায় ভাসবে। বস্তৃটি নিরেট হলে এক্ষেত্রে বস্তৃর খনত্ব তরলের খনত্ত্বের সমান।
- যদি $W_1 < W_2$ হয়, অর্থাৎ কড়ুর ওঞ্জন যদি কড়ু কর্ভৃক অপসারিত ভরদের গুজনের চেরে কম হর ভাহলে কম্পুটি ভরলে লার্থশিক নিমঞ্জিভ অকশায় ভাসে। কচ্চুটি নিব্রেট হলে এক্ষেত্রে বস্তুর খনস্ক তরলের খনত্বের চেরে কম।

ভৌমরা নিকরই মৃত সাপরের (Dead Sea) নাম শুনেছো। এটা লডানে অবস্থিত। শবণ ও অন্যান্য অপস্থব্য মিশ্রিত থাকার জন্য এই সাপরের পানির খনত্ব এক বেশি যে মানুষ সেখানে ভূবে না।

किल ए.9

विज ए.४

৫.৮ বাংলাদেশে নৌপথে দুর্ঘটনার কারণ

আমাদের দেশে প্রায়ই নৌ—দুর্ঘটনা ঘটে। একটা নৌষান বর্থন তৈরি করা হয় তথন তার আকৃতি ও আকার এমন হয় যে পানিতে ভাসালে ভ্রুত্বত অংশটুকু কর্তৃক অপসারিত পানির ওজন নৌষানের ওজনের সমান। এখন যত যাত্রী উঠবে তত নৌষানটি ভারী হবে একং পানির মধ্যে ভ্রুতে থাকবে। ধারণ ক্ষমভার বেশি যাত্রী উঠলে সেটা ভূবে যাবে। বেহেভ্ নদীতে স্রোভ থাকে, তেওঁ থাকে ভাই ধারণক্ষমভার চেয়ে বরং কিছু ক্ম যাত্রী নিয়ে বা আবহাওয়ার সভর্ক সংক্রেত অনুসরণ করে সভর্ককভার সাথে নৌষান চালানো উচিত। নৌষানের ত্র্টিপূর্ণ নক্সার জন্যও অনেকসময় ভরকেন্দ্র পরিবর্তিত হয়ে দুর্ঘটনা ঘটায়। কথনো অতিরিক্ত যাত্রী হয়ে নৌষানে উঠা ঠিক নয়।

৫.৯ বায়ুমণ্ডলের চাপ

Atmospheric pressure

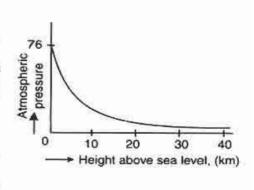
এই পৃথিবী বাস্কুমৰ্চণ বারা পরিবাশত। বাস্কুমণ্ডলের ওচ্ছন আছে। তাই বায়ুমণ্ডলের চাপ আছে। পৃথিবী পৃঠে এই চাপ প্রতি বর্গমিটারে প্রায় $10^5\,\mathrm{N}$ । একচ্ছন পূর্ণবয়স্ক মানুষের দেহের ক্ষেত্রকণ $1.5\,\mathrm{m}^2$ ধরণে বাস্কুমণ্ডল তার দেহের উপর $1.5{\times}10^5\,\mathrm{N}$ বল প্রয়োগ করে। তবে মানুষের শরীরের ভিতরে রক্তের চাপ বাইরের এই চাপ অপেক্ষা সামান্য বেশি বলে মানুষ সাধারণত বায়ুর এই চাপ অনুভব করে না।

বায়ুমঙল তার ওজনের জন্য ভূগৃষ্ঠে প্রতি একক ক্ষেত্রকলে দম্বভাবে যে পরিমাণ কল প্রয়োগ করে তাকে ঐ স্থানের বায়ুমঙলীয় চাপ বলে।

টরিলেন্দির পরীকা ও বারুমগুলীয় চাপের পরিমাণ

প্রায় এক মিটার দম্বা, একম্ব খোলা এবং স্বম ব্যাসবৃক্ত পুরু কাচের নল নাও।
নলটি বিশুন্থ পারদ হারা পূর্ণ করে কাচনলের খোলাম্ব আছুল দিয়ে আটকিরে
নলটিকে উন্টা করে একটি পারদপূর্ব পাত্রের মধ্যে ছুবাও (চিত্র ৫.৯)। এবার আছুল
সরিয়ে নলকে বাড়া করে রাঝার ব্যবস্থা করলে দেখা যাবে পারদ কিছুদ্র নেমে
এসে স্থির হয়ে দাঁড়িয়ে আছে। আপাতদৃষ্টিতে মনে হবে যে নলের ভিতরের
পারদস্তম্ভ আপনা—আপনি দাঁড়িয়ে আছে, কিন্তু বাস্তবে তা নয়। বাহুমন্ডলীয়
চাপের দরুন এর্প হচ্ছে। পাত্রের পারদের উপর বাহুমন্ডল সর্বদা চাপ দিছে। এই

वित द.५


চাপ পারদের মধ্য দিয়ে সঞ্চালিত হয়ে নদের ভিতরে ঊর্ধ্বমূখে ক্রিয়া করে। এই চাপই নদের ভিতরে পারদস্ভম্বকে ধরে রাখে। এই চাপ না ধাকলে অভিকর্ষের জন্য নদের ভিতরের পারদ নিচে নেমে আসত। সূত্রাং বায়ুমন্ডলীয় চাপ = নদের পারদস্ভদ্ধের চাপ। সাধারপ ক্ষেত্রে নদের ভিতর বে পারদস্ভদ্ধ ধাকবে তার উচ্চতা প্রায় 76 cm অর্থাৎ বায়ুমন্ডলের চাপ 76 cm উর্চু পারদস্ভদ্ধকে ধরে রাখতে সক্ষম। এতাবে তরুল স্ভদ্ধের উচ্চতা ব্যবহার করে বায়ুমন্ডলীয় চাপের গরিমাপ করা বায়।

কাচনলে যে পারদস্তম্ভ দাঁড়িয়ে থাকে তার উপর নলের বাস্থ প্রালত পর্যলত স্থান শূন্য। এই শূন্য স্থানকে টরিসেলির শূন্যস্থান বলে। এখানে সামান্য পারদ বাস্থা থাকে। বায়ুর চাশ পরিমাপ করার যদত্তকে ব্যারোমিটার বলে।

৫.১০ উচ্চতা ও বায়ুমণ্ডলীয় চাপ

Altitude and atmospheric pressure

বায়ুমগুলীয় চাগ নির্ভন্ন করে বায়ুমগুলের উচ্চতা এবং বায়ুর ঘনজ্বের উপর। অুপৃঠে অর্থাৎ সমূদ্র সমভলে বায়ুর সাধারণ চাপ হলো 76 cm পারদক্তন্থের চাপের সমান। অুপৃঠের সমূদ্র সমভল থেকে যত উপরে উঠা যায় ভত বায়ুক্তন্থের ওজন এবং ঘনজ্ব উতয়ই হ্রাস পায়। এজন্য উচ্চতা বৃশ্পির সাথে সাথে বায়ুমশুলীয় চাপ কম হয়। এজারেন্ট পর্বতশৃজ্যের উপরে বায়ুমগুলীয় চাপ সমূদ্র সমতলের চাপের প্রায় 30%। সেজন্য বেলি উচ্চতায় উঠলে শ্বাস-প্রশ্বাস নেওয়া কউকর হয়। আবার বেলি উচ্চতায় বায়ুমগুলীয় চাপের চেয়ে

विद्य ए.১०

মানুষের রক্তচাপ বেলি থাকে বলে নাক দিরে রক্ত পড়তে পারে। আজকাল বিমান যথন বেলি উচ্চতার নিমুচাপ অঞ্চল দিরে উড়ে যায় তথন এর অভ্যুলতরে যাত্রীদের সুবিধার্থে স্বাভাবিক চাপ বজার রাখার ব্যবস্থা করা হয়। ভূপৃষ্ঠ থেকে যত উপরে উঠা যায় তত বার্মগুলীতে চাপ কম। উচ্চতার সাথে বার্মগুলীয় চাপের পরিবর্তন লেখচিত্রে দেখানো হলো (চিত্র ৫.১০)।

৫.১১ বায়ুমগুলীয় চাপের পরিবর্তন ও আবহাওয়া

Change in atmospheric pressure and weather

কোনো স্থানে সময়ের সক্ষো সক্ষো বায়ুমন্ডলীয় চাপের পরিবর্তন ঘটে। এর কারণে বায়ুতে উপস্থিত জলীয় বাক্ষের পরিমাণের হাসবৃশ্বি তথা বায়ুর ঘনত্বের পরিবর্তন হয়। আমরা বায়ুমন্ডলীয় চাপের পরিবর্তন বৃথতে গারি ব্যারোমিটারের পারদস্তক্ষের উচ্চতার পরিবর্তন দেখে।

- ব্যারোমিটারের পারদস্তক্ষের উচ্চতা ধীরে ধীরে কমতে থাকলে বোঝা যাবে বায়ুতে জলীয় বাস্পের পরিমাণ ধীরে ধীরে বাড়ছে। কারণ জপীয় বাস্প বায়ুর চেয়ে হালকা। এক্ষেত্রে বৃট্টিপাতের সম্ভাবনা আছে।
- ২. হঠাৎ যদি পারদক্তভের উচ্চতা খুব কমে বায় ভবে বুঝতে হবে চায়দিকে বায়ুয়ড়লেয় চাগ সহসা কমে গেছে এবং ঐ স্থানে নিয়ুচাপের সৃষ্টি হয়েছে। পার্শ্ববর্তী উচ্চচাপের স্থান থেকে প্রবল বেপে বায়ু ঐ নিমুচাপের অঞ্চলে ছুটে আসবে। সুভরাৎ বড়ের সম্ভাবনা আছে।
- ব্যারোমিটারে পারদস্তন্থের উচ্চতা ধীরে বীরে বাড়ুগে বৃবতে হবে বায়ুমন্ডল থেকে জনীয় বাক্সা অপসারিত
 হচ্ছে এবং শৃক্ক বাতাস সেই স্থান অধিকার করছে। সূতরাং আবহাওয়া শৃক্ক ও পরিক্কার থাকবে। এতাবে
 বায়ুয় চাপের পরিবর্তন ব্যাক্রোমিটার দারা নির্ণয় করে আবহাওয়ার পূর্বাতাস দেওয়া বায়।

৫.১২ স্বিভিস্থাপকতা: পীড়ন ও বিকৃতি

Elasticity: stress and strain

সাধারণ অভিজ্ঞতা থেকে আমরা জানি একটা রবারের ফিতা টানলে তা দৈর্ঘ্যে বেড়ে যায়। আবার টান হেড়ে দিলে পুনরায় পূর্বের দৈর্ঘ্য ফিরে পায় বা ফিরে পেতে চেন্টা করে। এখানে টানা অর্থ কা প্রয়োগ করা আর দৈর্ঘ্য বেড়ে যাওয়া অর্থ বিকৃত হওয়া। মূলত যখনই কন্ড বিকৃত হর তখনই কন্ড্র ভিতরে একটা বাধাদানকারী বলের সৃষ্টি হর যার জন্য পূর্বের অকন্থায় ফিরে আসতে সচেন্ট হয়।

বাহ্যিক বল প্রয়োগ করে কোনো বস্তুর আকার বা আয়তন বা উভয়ের পরিবর্তনের চেন্টা করলে, যে ধর্মের জন্য বস্তুটি এই প্রচেন্টাকে বাধা দেয় এবং বল অপসারিত হলে বস্তু তার পূর্বের আকার বা আয়তন ফিরে পায় সেই ধর্মকে স্থিতিস্থাপকতা বলে। যে সব পদার্থের এই ধর্ম আছে তাদেরকে স্থিতিস্থাপক পদার্থ বলে। তবে বলের একটি সীমা আছে, যার বেশি বল প্রয়োগ করলে বস্তু আর পূর্বের আকার ফিরে পায় না। এই সীমাকে স্থিতিস্থাপক সীমা বলে।

যখন স্থিতিস্থাপক বস্তুর উপর বাহ্যিক বল প্রয়োগ করা হয় তখন বস্তুর অণুগুলো পরস্পর থেকে সরে যায়। তার ফলে বস্তুর দৈর্ঘ্য, আয়তন বা আকৃতির পরিবর্তন ঘটে। একক দৈর্ঘ্যের বা একক আয়তনের এই পরিবর্তনকে বিকৃতি বলে। বাহ্যিক বলের প্রভাবে কোনো বস্তুর মধ্যে বিকৃতির সৃষ্টি হলে স্থিতিস্থাপকতার জন্য বস্তুর ভিতরে একটি প্রতিরোধ বলের উদ্ভব হয়। এই প্রতিরোধ বল বাহ্যিক বলকে বাধাদানের চেন্টা করে। বস্তুর ভিতর একক ক্ষেত্রফলে লম্ঘভাবে উদ্ভুত এ প্রতিরোধকারী বলকে পীড়ন বলে। উল্লেখ্য যে বিকৃতির কোনো একক নেই। পীড়নের একক N ${\bf m}^{-2}$ ।

হুকের সূত্র (Hooke's law) : বিজ্ঞানী রবার্ট হুক স্থিতিস্থাপকতার মূলসূত্রটি আবিষ্কার করেন। এই সূত্রানুসারে— স্থিতিস্থাপক সীমার মধ্যে পীড়ন বিকৃতির সমানুপাতিক। গাণিতিকভাবে

এই ধ্রকটিকে বস্তুর উপাদানের স্থিতিস্থাপক গুণাজ্ঞ বলে। স্থিতিস্থাপক গুণাজ্ঞের এককণ্ড N m^{-2} ।

৫.১৩ পদার্থের আণবিক গতিতত্ত্ব

Molecular kinetic theory of matter

পদার্থের অণুগুলো গতিশীল অবস্থায় আছে, এই ধারণা ধরে নেওয়াই পদার্থের আণবিক গতিতত্ত্বের মূল বিষয়। নিমুবর্ণিত স্বীকার্যগুলোর উপর পদার্থের আণবিক গতিতত্ত্ব প্রতিষ্ঠিত:

যেকোনো পদার্থ অসংখ্য ক্ষুদ্র ক্ষুদ্র কণার সমন্বয়ে গঠিত।
 এই কণাগুলোকে পদার্থের অণু বলে।

চিত্র ৫.১১

- ২. অণুগুলো এতো ক্ষুদ্র যে তাদেরকে বিন্দুবৎ বিবেচনা করা হয়।
- ৩. পদার্থের অণুগুলো সর্বদা গতিশীল।
- গ্যাসের ক্ষেত্রে অণুগুলো বেশ দূরে দূরে থাকে, এ জন্য তাদের মধ্যে কোনো আকর্ষণ বা বিকর্ষণ বল কাজ করে না বললেই চলে। তরলের ক্ষেত্রে অণুগুলো কিছুটা দূরে দূরে থাকলেও তাদের মধ্যে আকর্ষণ বল কাজ করে এবং তরলকে পাত্রের আকারে ধারণ করতে বাধ্য করে। কঠিন পদার্থের ক্ষেত্রে অণুগুলো খুব কাছাকাছি থাকে এবং তাদের মাঝে তীব্র আকর্ষণ বল কাজ করে বিধায় কঠিন পদার্থের নিজস্ব আকার ও আয়তন থাকে।
- ৫. গ্যাস ও তরলের ক্ষেত্রে অণুগুলো এলোমেলো ছুটাছুটি করে এজন্য এরা পরস্পরের সাথে এবং পাত্রের দেয়ালের সাথে সংঘর্ষে লিশ্ত হয়।

৫.১৪ পদার্থের প্রাক্তমা অবস্থা

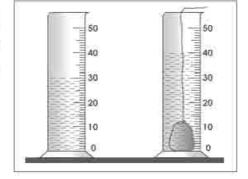
Plasma state of matter

পদার্থের চতুর্থ অবস্থার নাম প্রাক্তমা। এই প্রাক্তমা হলো অভি উচ্চ তাগমাব্রায় আয়নিত গ্যাস। প্রাক্তমার বড় উৎস হচ্ছে সূর্য। তাছাড়া অন্যান্য নক্ষরাপূলোও প্রাক্তমার উৎস। প্রায় করেক হাজার ডিপ্রি সেগসিয়াস তাপমাত্রায় প্রাক্তমা অবস্থার উৎপত্তি হয়। গ্যাসের ন্যায় প্রাক্তমার কোনো নির্দিউ আকার বা আয়তন নেই। প্রাক্তমা কণাপূলো তড়িৎ আধান বহন করে তাই প্রাক্তমা তড়িৎ পরিবাহী হিসেবে কাল করে। শিল্প কারখানার প্রাক্তমা টর্চ দিরে ধাতব পদার্থ কাটা হয়।

অনুসন্ধান ৫.১

কঠিন কম্ভুর ঘনত্ত নির্ণর

উদ্দেশ্য : যেকোনো আকারের কঠিন বস্তুর ঘনত্ব নির্ণয় করা। বদরগান্তি : মাগচেঙ্ক, নিক্তি, যেকোনো আকারের কঠিন বস্তু


ভদ্ধ : কোনো কঠিন কম্ভূ যভটুকু স্থান দখল করে থাকে ভাকে ঐ কম্ভূর আয়তন বলে। স্থার কম্ভূর একক স্থায়তনের ভরকে ভার ঘনত বলে।

কোনো কঠিন কস্তুকে তরল পদার্থে সম্পূর্ণ ছুবালে তার নিজের আয়তনের সমান তরল স্থানচ্যুত করে। কঠিন কস্তুকে পানিতে ছুবানোর পূর্বে ও পরে মাপচোডের পানির উপরিভাগের পাঠ বথাক্রমে V_1 এবং V_2 হলে কঠিন কস্তুর জায়তন,

$$V = (V_2 - V_1)$$
 (1)

এখন কফুর ভর Μ হলে, এর বনত্ত,

$$d = \frac{M}{V} \qquad (2)$$

काटकत्र गाताः

- একটি নিব্রির সাহায্যে পরীক্ষণীর কঠিন কম্ভূটির ভর নির্ণয় কর।
- ২. মাপচোছের অর্থেক পানি হারা পূর্ণ করে পানির উপরিভাগের গাঠ নাও।
- ৩. কঠিন বস্তুটিকে সুতা দিয়ে বেধে সাবধানে চোন্ডের পানিতে ডুবাও যেন তা চোন্ডের তগায় অবস্থান করে। এই অক্ষায় পানি স্থির হলে এর উপরিভাগের পাঠ নাও।
- মাপচোঙে বিভিন্ন পরিমাণ পানি নিয়ে ২ ৬ ৩ নং প্রক্রিয়া পুনরাবৃত্তি করে পাঠ ছকে উপস্থাপন কর।
- প্রয়োজনীয় হিসাবের সাহাব্যে কঠিন কম্ভুর আয়তন নির্ণয় করে 2 নং সমীকরণের সাহাত্যে খনত্ব নির্ণয় কর।

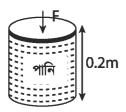
কন্তর তর ৬ আয়তন নির্ণয়ের হক:

পর্ববেক্ষণ সংখ্যা	কঠিন কম্পুর ভর M gm	পানির উপরিভাগের পাঠ, কভুকে দ্বানোর পূর্বে V_I cm ³	গানির উপরিভাগের পাঠ, কভুকে ভুবানোর পরে V_2 cm ³	কঠিন বস্তুর আয়তন $V = (V_2 - V_I) \text{ cm}^3$	গড় আয়তন V cm³
2					
٦					
9					

হিসাব:

কঠিন কচ্ছুর আয়তন
$$V=(V_2$$
 - V_I) ${
m cm}^3=\ldots \times 10^{-6}~{
m m}^3$ কঠিন কচ্ছুর ঘনত্ব $d=\frac{M}{V} imes 10^3~{
m kg~m}^{-3}$

অনুশীলনী


ক. বহুনির্বাচনি প্রশ্ন

সঠিক উন্তরের পাশে টিক $(\sqrt{})$ চিহ্ন দাও

- ১। বায়ুচাপ পরিমাপের যন্তের নাম কী ?
 - ক) থার্মোমিটার
 - গ) ম্যানোমিটার
- ২। তরলের চাপের পরিমাণ কী হবে ?
 - ক) গভীরতার সমানুপাতিক
 - গ) ঘনত্বের ব্যস্তানুপাতিক
- ৩। পদার্থের চতুর্থ অবস্থার নাম কী?
 - ক) গ্যাস
 - গ) কঠিন

- খ) ব্যারোমিটার
- ঘ) সিসমোমিটার
- খ) ক্ষেত্রফলের সমানুপাতিক
- ঘ) অভিকর্ষীয় ত্বরণের সমান
- 1) -110 train Augus .
- খ) প্লাজমা
- ঘ) তরল

চিত্র থেকে নিচের ৪ ও ৫ নং প্রশ্নের উত্তর দাও :

- ৪। পাত্রের নিমুতলে কী পরিমাণ চাপ অনুভূত হবে ?
 - **季**) 98 Pa

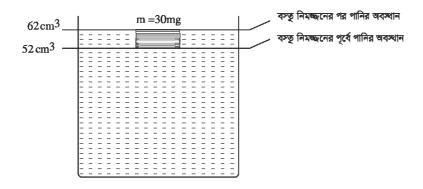
খ) 980 Pa

গ) 196 Pa

- ঘ) 1960 Pa
- \boldsymbol{c} । যদি পাত্রের মুখে \mathbf{F} বল প্রয়োগ করা হয় তবে এ বল
 - i. শুধুমাত্র পাত্রের তলায় চাপ প্রয়োগ করবে
 - ii. শুধুমাত্র পাত্রের বক্র তলে চাপ প্রয়োগ করবে
 - iii. পাত্রের সকল দিকে চাপ প্রয়োগ করবে

নিচের কোনটি সঠিক ?

ক. i


খ. ii

গ. iii

ঘ. i, ii ও iii

খ. সৃজনশীল প্রশ্ন :

চিত্র দেখে নিচের প্রশ্নগুলোর উত্তর দাও:

- ক) ঘনত্ব কালে বলে ?
- খ) চিত্রে বস্তুটির এভাবে ভেসে থাকার কারণ ব্যাখ্যা কর।
- গ) বস্তুটির ঘনত্ব নির্ণয় কর।
- ঘ) তরলের তাপমাত্রা ক্রমাগত বৃদ্ধির ফলাফল ব্যাখ্যা কর।

গ. সাধারণ প্রশ্ন :

- ১। বল, চাপ ও ক্ষেত্রফলের সম্পর্ক কী?
- ২। ঘনত্ব কাকে বলে? এর একক কী?
- ৩। বায়ুমণ্ডলীয় চাপ কাকে বলে?
- ৪। টরিসেলির শূন্যস্থান কি প্রকৃত পক্ষে শূন্য? ব্যাখ্যা কর।
- ৫। তরলের চাপ ও উচ্চতার মধ্যে সম্পর্ক নির্ণয় কর।

ষষ্ঠ অধ্যায় বস্তুর উপর তাপের প্রভাব

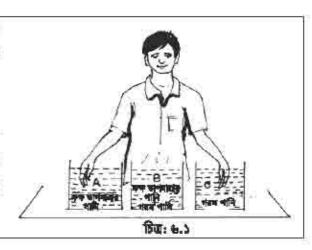
EFFECT OF HEAT ON SUBSTANCES

ভোগ এক প্রকার শক্তি যা পদার্থের অশুর গতির সাথে সম্পর্কিত। ভাগমারা হছে ভাগশক্তি কোন নিকে প্রবৃথিত হবে ভার একটি নির্দেশক। ভাগ প্রয়োগে বা অগসারণে কঠিন পদার্থের আকারের পরিকর্তন হটে, ভরণ পদার্থের আরভন পরিবর্তিত হয় একং বারবীর পদার্থের ভারতন ও চাপের পরিবর্তন হটে। ভাগ প্রয়োগে বা অপসারণে পদার্থ এক অক্তবা থেকে অন্য অক্তবার মুগাম্ভরিত হয়। কম্মুর উপর ভাগের এ সকল প্রভাব এই অব্যায়ে আলোচনা করা হবে।

এই অধ্যায় গাঠ লেবে আমরা-

- ১. তাপ ও ভাগমানা ব্যাধ্যা করতে গারব।
- পদার্থের ভাগমান্তিক ধর্ম বাাধ্যা করতে পারব।
- কারেনহাইট, সেদসিরাস এবং কেলন্ডিন ক্লেন্ডের মধ্যে সম্পর্ক বিশ্রেকা করতে গারব।
- বস্তুর অভ্যাতরীণ শক্তি বৃশ্জি সাপেকে ভাগমাত্রা কৃষ্ণি ব্যাধ্যা করতে পারব।
- পদার্থের ভাশীর প্রসারশ ব্যাখ্যা করতে পারব।
- ৬. কঠিন পদার্থের দৈর্ঘ্য, ক্ষেত্রকণ এবং আরজন প্রদারণ ব্যাখ্যা করতে পারব।
- ৭. তরকের আশাত এবং প্রকৃত প্রসারণ ব্যাখ্যা করতে শারব।
- ৮. আপেকিক ভাগ ও ভাগবারণ ক্ষমতা ব্যাখ্যা করতে গারব।
- তাপ পরিমাপের মুক্নীতি ব্যাধ্যা করতে পারব।
- ১০. পদার্থের অকথার পরিবর্তনে ভাগের প্রভাব ব্যাখ্যা করতে পারব।
- ১১. গদন, বান্দীতবদ ও মনীতবন ব্যাখ্যা করতে পারব।
- ১২. পানাজ্য ও স্কুটনাক্ত ব্যাধ্যা করতে পারব।
- ১৩. গদনাক্ষের উপর চাপের গ্রভাব ব্যাখ্যা করতে পারব।
- ১৪. স্ফুটন ও বান্দায়ন ব্যাধ্যা ব্যৱতে পারব।
- ১৫. গলনের এবং বান্দীভবনের সুন্তভাগ ব্যাখ্যা করতে গারব।
- ১৬. বাঙ্গারন শীন্তনীকরণের কারণ ব্যাখ্যা করতে পারব।
- ১৭. বাষ্পান্তনের উপর নিব্রামকের প্রভাব ব্যাখ্যা করতে পারব।

৬.১ তাগ ও তাগমাত্রা

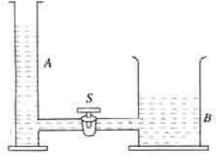

Heat and temperature

蜀中

ভাগ হলো এক প্রকার শক্তি যা ঠাভা ও গরমের অনুভূতি জাগায়। ভাগ উষ্ণতর কন্তু থেকে শীভগতর কন্তুর দিকে প্রবাহিত হয়। সূতরাং উষ্ণতার গার্ধক্যের জন্য বে শক্তি এক কন্তু থেকে জন্য কন্তুতে প্রবাহিত হয় তাকে ভাগ বলে। পদার্থের অপুশূলো সব সময় গড়িশীল অকথায় থাকে। ভাই এদের গতিশক্তি আছে। কোনো পদার্থের মোট ভাগের গরিমাণ এর মধ্যস্থিত অপুশূলোর মোট গতিশক্তির সমানুগাতিক। কোনো কন্তুতে তাগ প্রদান করা হলে অনুগূলোর গতি বেড়ে যার কলে গড়িশক্তিও বেড়ে যার।

ভাপের একক : SI পশ্বতিতে তাপের একক হলো ভূপ (J)। পূর্বে তাপের একক হিসাবে ক্যালরি (Cal) ব্যবহৃত হতো। ক্যালরি এবং ভূলের মধ্যে সম্পর্ক হলো 1 cal = 4.2 J।

কাক : টেবিলে রকিড ভিনটি গাত্রে Λ , B, C সেবেল দাও। পাত্রগুলোর Λ তে কক তাপমাত্রার পানি এবং Cতে বেশ গরম পানি (তবে তোমার হাতে সহনীয়) নাও। B তে বানিকটা গরম ও কক তাপমাত্রার পানি মেশাও। এবার Λ পাত্রে ভোমার ভান হাত এবং C পাত্রে বাষ হাত ভ্বাত। এক মিনিট পর হাত দুইটি উঠাও এবং একসাথে দুই হাত B পাত্রে ভ্বাও। এবার তোমার দুই হাতের অনুকৃতি কী ?


বিশিও C পাত্রে একটি নির্দিন্ট ভাগমান্তার পানি আছে তবুও ভান হাতে গরম এবং বাম হাতে ঠাতা অনুকৃত হবে। কারণ ভান হাত আগে বে পানির মধ্যে ডুবানো ছিল ভার চেন্তে B পাত্রের পানির ডাগমান্তা বেশি। অনুর্পভাবে বাম হাতে ঠাতা অনুকৃত হবে কারণ বাম হাত আগে বে পানির মধ্যে ডুবানো ছিল ভার চেয়ে B পাত্রের পানির ভাগমান্তা কম।

कानवावा

ভাগমাত্রা হচ্ছে কোনো কন্দুর এমন এক ভাগীয় অকশা যা নির্মারণ করে ঐ কন্দুটি অন্য কন্দুর ভাগীয় সংলর্গে এনে কন্দুটি ভাগ হারাবে না গ্রহণ করবে।

ভাগসাঞ্জাকে ভরগের মুক্ত তলের উচ্চভার সাথে জুগলা করা বেডে পারে। আমরা জানি উচ্চভার তল থেকে ভরগ সর্বদা নিমুভর তলের দিকে প্রবাহিত হয়। চিত্রে Λ পারের ভরগের উচ্চভার চেয়ে বেশি। কিম্ভূ Λ পারে ভরগের পরিমাণ কম এবং B পারে ভরগের পরিমাণ বেশি। স্টেশ কর্ক S খুলে দিলে Λ পারে থেকে B পারে ভরল প্রবাহিত হতে বাক্ষবে যতক্ষণ না উভর পালে ভরগের উচ্চভা সমান হয়। তেমনিভাবে ভাগীর সংবোগ স্থাপন করলে উক্ষভর

কন্ত্ থেকে শীভনভর কন্তুতে ভাগ প্রবাহিত হয় বভন্দণ না উভরের তাপমাত্রা সমান হয়।

विका ध.३

যে বস্তুর তাপমাত্রা বেশি সে তাপ হারায় আর যে বস্তুর তাপমাত্রা কম সে তাপ গ্রহণ করে। তাপমাত্রা পরিমাপের যশ্তের নাম থার্মোমিটার।

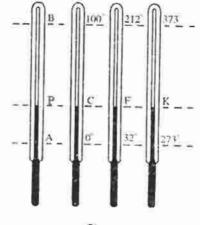
ভাগমাত্রার একক: আন্তর্জাতিক পল্বতিতে তাপমাত্রার একক কেলভিন (K)।

কেলভিন : যে নির্দিন্ট তাপমাত্রা ও চাপে পানি তিন অবস্থাতেই অর্থাৎ বরফ, পানি এবং জলীয় বান্পর্গে অবস্থান করে তাকে পানির ত্রৈধবিন্দুর (Triple Point) বলে। এই ত্রেধবিন্দুর তাপমাত্রা $273~{
m K}$ ধরা হয়। পানির ত্রেধবিন্দুর তাপমাত্রার $\frac{1}{273.16}$ ভাগ কে এক কেলভিন $(1~{
m K})$ বলে।

৬.২ পদার্থের তাপমাত্রিক ধর্ম

Thermometric properties of matter

তাপমাত্রা পরিমাপের ক্ষেত্রে পদার্থের বিশেষ বিশেষ ধর্মকে কাচ্ছে লাগানো হয়। তাপমাত্রার তারতম্যের জন্য পদার্থের যে ধর্ম নিয়মিতভাবে পরিবর্তিত হয় এবং এই পরিবর্তন লক্ষ করে সহজ্ব ও সুক্ষতাবে তাপমাত্রা নির্পন করা যায় সেই ধর্মকেই পদার্থের তাপমাত্রিক ধর্ম বলে। ঐ পদার্থকে তাপমাত্রিক পদার্থ বলে। থার্মোমিটারের মধ্যে তাপমাত্রিক পদার্থ ব্যবহার করা হয়।


তাপমাত্রিক ধর্মগুলো হচ্ছে পদার্থের আয়তন, রোধ, চাপ ইত্যাদি। পারদ থার্মোমিটারের ক্ষেত্রে কাচের কৈশিক নলের ভিতরে রক্ষিত পারদকে তাপমাত্রিক পদার্থ এবং পারদ দৈর্ঘ্যকে তাপমাত্রিক ধর্ম বলা হয়। একইভাবে গ্যাস থার্মোমিটারের ক্ষেত্রে প্রব আয়তনে পাত্রে রক্ষিত গ্যাসকে তাপমাত্রিক পদার্থ এবং গ্যাসের চাপকে তাপমাত্রিক ধর্ম বলা হয়।

৬.৩ সেশসিয়াস, ফারেনহাইট ও কেশভিন স্কেশের মধ্যে সম্পর্ক Relation among Celsius, Farenheit and Kelvin scale

কোনো বস্তুর তাপমান্ত্রা সঠিকভাবে নির্দেশ করার জন্য তাপমাত্রার একটি স্কেল প্রয়োজন। তাপমাত্রার স্কেল তৈরির জন্য দুইটি নির্দিই তাপমাত্রাকে স্থির ধরে নেওয়া হয়।এই তাপমাত্রা দুইটিকে স্থিরাজ্ঞ্ক বলে। স্থিরাজ্ঞ্ক দুইটি– নিমুস্থিরাজ্ঞ্ক ও উর্ধ্বস্থিরাজ্ঞ্ক। প্রমাণ চাপে যে তাপমাত্রায় বিশূপ্থ বরক গলে পানি হয় অথবা বিশূপ্থ পানি জমে বরক হয় তাকে নিমুস্থিরাজ্ঞ্ক বলে। একে হিমাজ্ঞ্ক বা বরক কিনুও বলে। আবার প্রমাণ চাপে ফুটন্ত বিশূপ্থ পানি যে তাপমাত্রায় জলীয় বাক্ষো পরিণত হয় তাকে উর্ধ্বস্থিরাজ্ঞ্ক বলে। উর্ধ্বস্থিরাজ্ঞ্ককে সক্ট্নাজ্ঞ্ক বা বাজ্ঞাকিন্তুও বলে। স্থিরাজ্ঞ্ক দুইটির মধ্যবর্তী তাপমাত্রায় ব্যবধানকে মৌলিক ব্যবধান বলে। মৌলিক ব্যবধানকে নানাভাবে ভাগ করে তাপমাত্রায় বিভিন্ন স্কেল তৈরি করা হয়েছে।তাপমাত্রায় প্রচলিত স্কেল তিনটি: সেলসিয়াস, ফারেনহাইট ও কেলভিন।

সেলসিয়াস, ফারেনহাইট ও কেলভিন স্কেলে তাপমাত্রার একক যথাক্রমে 0 C, 0 F এবং K। সেলসিয়াস স্কেলে নিমুস্পিরাজ্ঞ 0^0 C, ফারেনহাইট স্কেলে 32^0 F এবং কেলভিন স্কেলে 273 K। উর্থ্বস্পিরাজ্ঞ্ক সেলসিয়াস স্কেলে 100^0 C, ফারেনহাইট স্কেলে 212^0 F এবং কেলভিন স্কেলে 373 K।

ভাপমাত্রার বিভিন্ন ক্রেকের মধ্যে সম্পর্ক স্থাপন :
নিমুস্থিরাজ্ক A এবং উধ্বস্থিরাজ্ক B চিহ্নিত একটি
থার্মোমিটার নেওয়া হলো (চিত্র ৬.৩)। তারপর সেলসিয়াস,
ফারেনহাইট ও কেলভিন ক্রেলে দাগাজ্ঞিত আরো তিনটি
থার্মোমিটার পাশাপাশি রাখা হলো। AB থার্মোমিটারের P
অবস্থানের পাঠ অপর তিনটি ক্রেলে যথাক্রমে C, F এবং K।

छिख ७.७

সূতরাং এই তিন স্কেলে PA দূরত্ব যথাক্রমে C-0, F-32 এবং K-273। আবার $\frac{PA}{BA}$ ধ্রক হওয়ায় লেখা যায়,

$$\frac{PA}{BA} = \frac{C-0}{100-0} = \frac{F-32}{212-32} = \frac{K-273}{373-273}$$

$$rac{C}{100} = rac{F-32}{180} = rac{K-273}{100}$$

$$\sqrt[4]{\frac{C}{5}} = \frac{F - 32}{9} = \frac{K - 273}{5}$$
(6.1)

সমীকরণ (6.1) সেলসিয়াস,ফারেনহাইট ও কেলভিন স্কেলের মধ্যে সম্পর্ক নির্দেশ করে।

তবে সেলসিয়াস ও কেলভিন স্কেলের সহজ সম্পর্ক হলো- সেলসিয়াস স্কেলের পাঠের সাথে 273 যোগ করলে কেলভিন স্কেলে পাঠ পাওয়া যায়। যেমন 1^0 C তাপমাত্রা = (1+273) K = 274 K তাপমাত্রা।

তবে তাপমাত্রার পার্থক্য $1^0 \mathrm{C}$ হলে সেটা $1 \mathrm{K}$ এর সমান হবে।

গাণিতিক উদাহরণ ৬.১ : সুস্থ মানুষের দেহের তাপমাত্রা 98.4 $^0\,\mathrm{F}$

। সেলসিয়াস স্কেলে এই তাপমাত্রা কত হবে?

আমরা জানি

$$\frac{C}{5} = \frac{F-32}{9}$$

$$\boxed{4} \frac{C}{5} = \frac{98.4 - 32}{9}$$

বা $C = 36.89^{\circ}$ C

উত্তর : 36.89⁰ C

দেওয়া আছে, ফারেনহাইট স্কেলে তাপমাত্রা, $F=98.4^0~{
m F}$ সেলসিয়াস স্কেলে তাপমাত্রা, C=?

কাজ: শ্রেণি কক্ষের তাপমাত্রা সেলসিয়াস স্কেলে পরিমাপ করে ফারেনহাইট ও কেলভিন স্কেলে প্রকাশ কর।

৬.৪ বস্তুর তাপমাত্রা বৃদ্ধি ও অভ্যন্তরীণ শক্তি

Rise of temperature and internal energy of a body

পদার্থের আণবিক গতিতত্ত্বের ভিত্তিতে আমরা জানি যে, পদার্থের অণুগুলো সর্বদা গতিশীল। কঠিন পদার্থের অণুগুলো একস্থানে থেকে এদিক—গুদিক স্পন্দিত হয়। তরল ও গ্যাসীয় পদার্থের অণুগুলো এলোমেলোভাবে ছুটাছুটি করে। অণুগুলোর এই গতির জন্য গতিশক্তির সঞ্চার হয়। আবার কঠিন পদার্থের অণুগুলোর মধ্যে আকর্ষণ—বিকর্ষণ বল আছে বলে বিভবশক্তি আছে। গ্যাসীয় পদার্থের অণুগুলোর মধ্যে আকর্ষণ—বিকর্ষণ বল নেই বলে বিভবশক্তি নেই। পদার্থের অণুগুলোর গতিশক্তি ও বিভবশক্তির সমস্টিকে অভ্যন্তরীণ শক্তি বলে। স্পন্টত অভ্যন্তরীণ শক্তির এক অংশ গতিশক্তি অপর অংশ বিভবশক্তি। কোনো বস্তুতে তাপীয় শক্তি প্রদান করলে তার অভ্যন্তরীণ শক্তি বাড়ে। তবে অভ্যন্তরীণ শক্তির গতিশক্তি অংশটুকু শুধুমাত্র তাপমাত্রা বৃদ্ধি ঘটায়।

৬.৫ পদার্থের ভাপীয় প্রসারণ

Thermal expansion of a substance

প্রায় সকল পদার্থিই তাপ প্রয়োগে প্রসায়িত হয় আর তাপ অপসায়ণে সংকৃচিত হয়। যখন কোনো কচ্চু উল্ভন্ত হয়, তখন বস্ভূটির প্রত্যেক অণুর তাপশক্তি তথা গতিশক্তি বৃদ্ধি পায়। কঠিন পদার্থের কোয়ে আল্ডঃআণবিক বলের বিপরীতে অপুগুলো আরো বর্ধিত শক্তিতে স্পন্দিত হতে থাকে ফলে সাম্যাবস্থা থেকে অপুগুলোর সরণ বৃন্ধি গায়। কিন্তু কোনো অপু এর সাম্যাকথা থেকে সরে যাবার সময় টান অনুভব করে। অর্থাৎ, অপুটি যখন গার্শ্ববর্তী অপুর কাছাকাছি যেতে চায় তখন বিকর্ষণ অনুভব করে। আবার আন্তঃআণবিক দ্রজ্ব যখন বৃশ্বি পায় তখন আকর্ষণ অনুভব করে। তাপমাত্রা বৃশ্জি কারণে কঠিন কন্ত্র অণুগুলো স্পন্দিত হতে থাকে তবে তা সরল ছন্দিত স্পন্দন নয়। এর কারণ, দুই অণ্র মধ্যে দুরত্ব সাম্যাকশার তৃপনার যদি কমে যার ভাহলে বিকর্ষণ কা দুত বৃন্ধি পায়। কিম্ছু এদের মধ্যে দূরত্ব সাম্যাকশার তুলনায় বৃদ্ধি পেলে আকর্ষণ বল তভ দুত বৃদ্ধি পায় না।কলে ভাগমাত্রা বৃদ্ধি পাবার কলে কঠিন বস্তুর মধ্যে অণুগুলো যখন কাঁপতে থাকে তখন একই শক্তি নিয়ে ভিডর দিকে যতটা সরে আসতে পারে, বাইরের দিকে তার চেয়ে বেশি সরে যেতে গারে। এর ফলে প্রত্যেক অণুর গড় সাম্যাকথান বাইরের দিকে সরে যায় একং বস্ভূটি প্রসারণ লাভ করে।ভরল পদার্থের বেলার আশ্ভঃআণবিক বলের প্রভাব কম বলে তাপের কারণে এর প্রসারণ বেশি হয়। বারবীয় পদার্থের কেশার তাপমাত্রা বৃশ্জির ফলে অণুগুলোর ছুটাছুটি বৃশ্বি পায়। তাপীয় প্রসারণ গ্যাসীয় পদার্থে সবচেয়ে বেশি, ভরলে ভার চেয়ে কম এবং কঠিন পদার্থে সবচেয়ে কম।

৬.৬ কঠিন পদার্থের প্রসারণ

Expansion of solids

তাপ প্রয়োগ করলে কঠিন পদার্থের দৈর্ঘ্য, ক্ষেত্রফল এবং আয়তন বৃশ্বি পায়।

কঠিন পদার্থের দৈখ্য প্রসারণ ও দৈখ্য প্রসারণ সহগ

কঠিন বস্তুতে তাপ প্রয়োগ করলে নির্দিষ্ট দিকে দৈর্ঘ্য বরাবর যে প্রসারণ হয় তাকে বস্তুটির দৈর্ঘ্য প্রসারণ বলে। ধরা যাক, $heta_I$ ভাপমাঞ্জায় কোনো দণ্ডের দৈর্ঘ্য l_I , ভাপমাঞ্জা বৃন্ধি করে $heta_2$ হলে শেব দৈর্ঘ্য l_{Z_i}

দৈৰ্ঘ্য বৃশ্বি =
$$l_2 - l_1$$

এবং তাপমাত্রা বৃশ্বি =
$$\theta_2 - \theta_1$$

দৈর্ঘ্য প্রসারণ সহগ α ঘারা প্রকাশ করা হয় যার রাশিমালা

দেশ্য প্রসারশ সংগ হে থারা প্রকাশ করা হর থার রালিমালা
$$\alpha = \frac{l_2 - l_1}{l_1(\theta_2 - \theta_1)}$$

$$= \frac{$$
 দৈশ্য বৃশ্ধি ভাগমান্তার বৃশ্ধি চিত্র ৬.৪

6.2 নং সমীকরণে যদি আদি দৈর্ঘ্য l_I $-1 \mathrm{m}$ এবং ভাগমাত্রা বৃষ্ণি

$$\theta_2 - \theta_I = 1 \text{ K হর ভবে,}$$

$$\alpha = l_2 - l_1 = দৈখ্য বৃপিধ$$

স্তরাং 1 m দৈর্ঘ্যের কোনো কঠিন পদার্থের দণ্ডের তাপমাত্রা 1 K বৃশ্পির ফলে যতট্কু দৈর্ঘ্য বৃশ্বি পায় তাকে ঐ দন্ডের উপাদানের দৈর্ঘ্য প্রসারণ সহগ বলে। এর একক ${
m K}^{-1}$ । তামার দৈর্ঘ্য প্রসারণ সহগ $16.7 imes 10^{-6} {
m K}^{-1}$ বলতে বুঝায় যে $1\,\mathrm{m}$ দৈর্ঘ্যের ভাষার দণ্ডের ভাগমাত্রা $1\,\mathrm{K}$ বৃশ্বি করলে এর দৈর্ঘ্য $16.7 imes 10^{-6}\,\mathrm{m}$ বৃশ্বি পার।

গাণিতিক উদাহরণ ৬.২ : 20° C তাপমাত্রায় একটি ইস্পাতের দন্ডের দৈর্ঘ্য $100~\mathrm{m}$ । 50° C তাপমাত্রায় এর দৈর্ঘ্য 100.033 m হলে ইস্পাতের দৈর্ঘ্য প্রসারণ সহগ নির্ণয় কর।

আমরা জানি, দৈর্ঘ্য প্রসারণ সহগ, $\alpha = \frac{l_2 - l_1}{l_1(\theta_2 - \theta_2)}$

- 0.033 m 100 m×30K
- $= 11 \times 10^6 \,\mathrm{K}^1$

দেওয়া আছে,

वानि निर्धा, l₁ = 100 m

শেষ দৈখ্য, $l_2 = 100.033 \text{ m}$

লাদি ভাশমাত্রা, $\theta_1 = 20^{\circ}$ C

শেষ তাপমাত্রা, $\theta_2 = 50$ °C

তাপমাত্রা বৃশ্বি, $\theta_2 - \theta_1 = 30$ K

দৈখ্য বৃশ্বি, $l_2 - l_1 = 0.033$ m

দৈর্ঘ্য প্রসারণ সহগ, ৫ = ?

পর্যবেক্ষণ: রেল লাইনে যেখানে দুইটি লোহার বার মিলিত হয় সেখানে ফাঁক থাকে কেন?

রৌদ্রের তাপে ও চাকার ঘর্ষণে লোহা উদ্ভন্ত হয়ে প্রসারিত হয়। এই প্রসারণের সুবিধার জন্য ফীক রাখা হয়।ফীক না থাকলে প্রসারণের জন্য রেল লাইন বেঁকে যাবে।

ক্ষেত্র প্রসারণ ও ক্ষেত্র প্রসারণ সহপ

একটি কঠিন বস্তুর তাগমাত্রা বৃশ্বি করণে এর ক্ষেত্রকল বৃশ্বি পায়। একে ক্ষেত্র প্রসারণ বলে। ধরা বাক $heta_J$ ভাপমাত্রায় কোনো কঠিন পদার্থের পৃষ্ঠের আদি ক্ষেত্রফল A_1 তাপমাত্রা বৃশ্বি করে $heta_2$ করলে শেব ক্ষেত্রফল A_2

সূতরাং তাপমাত্রা বৃশ্দি $= \theta_2 - \theta_1$

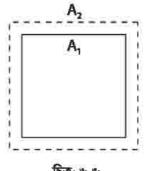
ক্ষেত্রফণ বৃশ্বি= $A_2 - A_1$

ক্ষেত্র প্রসারণ সহগকে β ঘারা প্রকাশ করা হয় যার রাশিমালা

$$\beta = \frac{A_2 - A_I}{A_I(\theta_2 - \theta_I)}$$
ক্ৰেঞ্জ বৃশ্বি

= আদি ক্ষেত্রকন × তাপমাত্রার বৃশ্বি

6.3 নং সমীকরণে যদি আদি ক্ষেত্রকল $A_I = 1 \text{ m}^2$ এবং তাপমাত্রা বৃদ্ধি $(\theta_2 - \theta_I) = 1$ K হয় তবে


$$\hat{oldsymbol{eta}} = A_2 - A_1$$
= ক্ষেত্ৰফল বৃদ্ধি।

সূতরাং 1 m² ক্ষেত্রফলের কোনো কঠিন পদার্থের তাপমাত্রা 1 K বৃশ্বির ফলে যতটুকু ক্ষেত্রফল বৃশ্বি পায় তাকে ঐ বস্তুর উপাদানের ক্ষেত্র প্রসারণ সহগ বলে। এর একক ${f K}^{-1}$ ।

ভামার ক্ষেত্র প্রসারণ সহগ $33.4 \times 10^{-6} \, \mathrm{K}^{-1}$ ক্লাভে বুঝায় যে $1 \, \mathrm{m}^2$ ক্ষেত্রকলের কোনো ভামা খন্ডের ভাশমাত্রা $1 \, \mathrm{K}$ বৃদ্ধি করলে তার ক্ষেত্রফল $33.4 imes 10^{-6}\,\mathrm{m}^2$ বৃদ্ধি পায়।

हिन्दाः ७.८

চিত্ৰ: ৬.৬

বারতন প্রসারণ ও বারতন প্রসারণ সহগ

কোনো কঠিন পদার্থের ভাপমাত্রা বৃশ্বি করণে এর আয়তন বৃশ্বি পায়। একে আয়তন প্রসারণ বলে।

ধরা যাক, কোনো কঠিন পদার্থের আদি আয়তন V_1 এবং আদি তাপমাত্রা θ_1 । এর তাপমাত্রা বাড়িয়ে যখন θ_2 করা হলো তখন আয়তন বৃশ্বি পেয়ে V_2 হলো। সূতরাং আয়তন বৃশ্বি = $V_2 - V_1$ । তাপমাত্রা বৃশ্বি = $\theta_2 - \theta_1$ । আয়তন প্রসারণ সহগকে γ ঘারা প্রকাশ করা হয় যার রাশিমালা নিমুরূপ,

$$\gamma = \frac{V_2 - V_1}{V_1(\theta_2 - \theta_1)} \tag{6.4}$$

ভায়তন বৃশ্বি

= আদি আয়তন×তাশমাত্রার বৃশ্বি

6.4 নং সমীকরণে যদি আদি আয়তন $V_I=1~\mathrm{m}^3$ এবং তাপমাত্রা বৃষ্ণি $\theta_2-\theta_I=1~\mathrm{K}$ হয় তবে

 $\gamma = V_2 - V_1 =$ আয়ন্তন বৃশ্বি।

সূতরাং $1 \ m^3$ আয়তনের কোনো কঠিন পদার্থের তাপমাত্রা $1 \ K$ বৃশ্বির কলে যতটুকু আয়তন বৃশ্বি পার তাকে ঐ কন্ত্র উপাদানের আয়তন প্রসারণ সহগ বলে।

তামার আয়তন প্রসারণ সহগ $50.1\times10^{-6}\,\mathrm{K}^{-1}$ বলতে বুঝায় $1~\mathrm{m}^3$ আয়তনের তামার তাগমাত্রা $1~\mathrm{K}$ বৃদ্ধি করলে আয়তন $50.1\times10^{-6}\,\mathrm{m}^3$ বৃদ্ধি পাবে। এদের মধ্যে সম্পর্ক :

y = 3a 47 β = 2a

৬.৭ ভরুদ পদার্থের প্রসারণ

Expansion of liquid

ভরণ পদার্থের নির্দিষ্ট দৈর্ঘ্য বা ক্ষেত্রকণ নেই। ভবে নির্দিষ্ট আরতন আছে। ভরণের ভাপমাত্রা বৃশ্বি করণে এর আরতন বৃশ্বি পায়। সূতরাং ভরণের প্রসারণ কণতে ভরণের আরতন প্রসারণকেই বোঝায়। ভাপমাত্রা বৃশ্বির সাথে সাথে সকল ভরণ সমান হারে বৃশ্বি পায় না। একই ভাপমাত্রা বৃশ্বির জন্য সমলারভনের বিভিন্ন ভরণ পদার্থের প্রসারণ বিভিন্ন হয়।

পরীকা

শন্দা নশমুক্ত সমজায়তনের ও সমজাকারের করেকটি কাচের বাস্তু নেওয়া হলো।
এতে সমজায়তন পানি, জ্যালকোহল, কেরোসিন,ইখার প্রসৃতি করেকটি তরল নেওয়া
হলো (চিত্র : ৬.৮)। এবার একটি অপেক্ষাকৃত বড় পাত্রে কক্ষ তাপমাত্রার পানি নিয়ে
তার মধ্যে এই বাস্তুপুলোকে উলন্দ্রভাবে ন্যাপন করা হলো। সব কটি বাস্ত্রের মধ্যে
তরলের উপরিতল একই থাকবে। এখন পাত্রে কিছু গরম পানি ঢালা হলো। কিছুক্ষণ
পর যথন বাস্বপুলো উচ্চ তাপমাত্রা প্রান্ত হবে তখন দেখা যাবে বাস্তের নলে তরলের
উপরিতল একই উচ্চতার নেই, বিভিন্ন নলে তরলের উচ্চতা বিভিন্ন। এ থেকে বোঝা

विष: ७.৮

ষায় যে নির্দিষ্ট তাপমাত্রা বৃশ্চিতে সমতায়তনের বিভিন্ন ভরদের আয়তন প্রসারণ বিভিন্ন হয়।

৬.৮ তরলের প্রকৃত ও আগাত প্রসারণ

Real and apparent expansion of liquid

তরলকে সর্বদা কোনো পাত্রে রেখে উক্তক্ত করতে হয়। ভাপ প্রয়োগ করলে তরল ও পাত্র উত্তরেরই প্রসারণ ঘটে। এই কারণে তরলের বে প্রসারণ আমরা লব্দ করি তা তার প্রকৃত প্রসারণ নর – আপাত প্রসারণ। সূত্রাং তরলের প্রসারণ দুই প্রকার : ক) প্রকৃত প্রসারণ ও খ) আপাত প্রসারণ

প্রকৃত প্রসারণ : তরলকে কোনো পাত্রে না রেখে (যদি সম্ভব হয়) তাগ দিলে তার যে আয়তন প্রসারণ হতো তাকে তরলের প্রকৃত প্রসারণ বলে। তবে তা সম্ভব নয় ফলে পাত্রের প্রসারণ বিকেনা করে প্রকৃতই তরলের যেটুকু প্রসারণ ঘটে তাই প্রকৃত প্রসারণ। একে V_{r} হারা প্রকাশ করা হয়।

বাগান্ত প্রসারেণ : কোনো পাত্রে ভরণ রেখে ভাগ দিলে ভরন্দের যে বায়ন্তন প্রসারণ দেখতে পাওরা যায়, বর্ধাৎ পাত্রের প্রসারণ বিবেচনায় না এনে ভরন্দের যে প্রসারণ পাওয়া যায় তাকে ভরন্দের বাপান্ত প্রসারণ বলে। একে $V_{\mathbf{x}}$ দারা প্রকাশ করা হয়।

প্রকৃত প্রসারণ ও আগাত প্রসারণের মধ্যে সম্পর্ক

একটা দাগ কটা সরু নগবিশিউ কাচের বান্ধ নিয়ে তার A দাগ পর্যন্ত কোনো তরগ ঘারা পূর্ণ করা হগো। এখন তরগ সভজের দিকে লক্ষ রেখে বান্ধটিকে গরম করলে দেখা যাবে যে, তরগের উপরিতন A থেকে B দাগ পর্যন্ত নেমে লালে। তারগর আবার B দাগ থেকে পুরু করে A দাগ অভিক্রম করে C দাগ পর্যন্ত উঠে। এর কারণ তাগ প্রয়োগে প্রথমে বান্ধটির আরতন বৃশ্বি পার। যার জন্য তরল A থেকে B তে নেমে যার। পরে তরগ বেই গরম হয় সেই তার আরতন বৃশ্বি পুরু হয় এবং B থেকে C পর্যন্ত উঠে। কঠিন পদার্থের চেয়ে তরগের প্রসারণ বেশি বিধায় এর্প ঘটে। আপাত দৃষ্টিতে মনে হবে তরল প্রথমে A দাগ পর্যন্ত হিল এবং স্বশ্বেষে C দাগে উঠেছে। তাই CA হলো আপাত প্রসারণ। একে V_{s} হারা প্রকাশ করা হয়।

চিত্ৰ থেকে দেখা যায় যে,

$$CB = CA + AB$$

বা প্রকৃত প্রসারণ = জাপাত প্রসারণ + পাত্রের প্রসারণ

$$V_r = V_a + V_g \tag{6.5}$$

৬.১ তাপৰারণ ক্ষমতা ও আপেক্ষিক তাপ

Thermal capacity and specific heat

ভাগধারণ ক্মভা

কোনো বস্তুর অম্তর্নিহিত তাপের পরিমাণ বস্তুটির তর, উপাদান ও তাপমান্তার উপর নির্তর করে। কোনো কস্তুর তাপমাত্রা এক একক বাড়াতে বে পরিমাণ তাপের প্রয়োজন হয় তাকে ঐ বস্তুর তাপধারণ ক্ষমতা বলে। তাপধারণ ক্ষমতা বস্তুর উপাদান একং ভরের উপর নির্তরশীল।

ধরা বাক, কোনো কন্তুর ভাপমান্তা $\Delta \theta$ বাড়াতে Q পরিমাণ ভাপ গাগে। সূতরাং এক একক ভাগমান্তা বাড়াতে ভাপ গাগে $\frac{Q}{\Delta \theta}$ ।

সূতরাং ভাগধারণ ক্ষমভা,
$$C = \frac{Q}{\Delta \theta}$$
 (6.6) ভাগধারণ ক্ষমভার একক JK^{-1} ।

আপেক্ষিক তাপ

একক ভরের কোনো বস্তুর তাপমাত্রা এক একক বাড়াতে যে পরিমাণ তাপের প্রয়োজন হয় তাকে ঐ বস্তুর উপাদানের আপেক্ষিক তাপ বলে।

m ভরের কোনো বস্তুর তাপমাত্রা $\Delta \theta$ বাড়াতে যদি Q তাপের প্রয়োজন হয় তবে একক ভরের ঐ বস্তুর তাপমাত্রা এক একক বাড়াতে $\frac{Q}{m\Delta \theta}$ তাপের প্রয়োজন হয় সূতরাং, আপেক্ষিক তাপ $S=\frac{Q}{m\Delta \theta}$ (6.7)

আপেক্ষিক তাপের একক J kg^{-1} K^{-1}

পদার্থ	আপেক্ষিক তাপ (J kg ⁻¹ K ⁻¹)
পানি	4200
বরফ	2100
জলীয় বাষ্প	2000
সীসা	130
তামা	400
রুপা	230
	I

6.7 সমীকরণ থেকে দেখা যায়,

$$Q = ms\Delta\theta \tag{6.8}$$

অর্থাৎ গৃহিত তাপ বা বর্জিত তাপ = ভর imes আপেক্ষিক তাপ imes তাপমাত্রার পার্থক্য

আপেক্ষিক তাপ ও তাপধারণ ক্ষমতার সম্পর্ক

যেহেতু $\frac{Q}{\Delta \theta}$ হচ্ছে তাপধারণ ক্ষমতা C, (6.7) সমীকরণ থেকে দেখা যায় আপেক্ষিক তাপ

$$S = \frac{Q}{m\Delta\theta} = \frac{C}{m}$$

অর্থাৎ, আপেক্ষিক তাপ= তাপধারণ ক্ষমতা ভর

সুতরাং বস্তুর একক ভরের তাপধারণ ক্ষমতাকে তার উপাদানের আপেক্ষিক তাপ বলে।

৬.১০ তাপ পরিমাপের মূলনীতি

Fundamental principle of measurement of heat

ভিন্ন তাপমাত্রার দুইটি বস্তুকে তাপীয় সংস্পর্শে আনা হলে তাদের মধ্যে তাপের আদানপ্রদান হয়। যে বস্তুর তাপমাত্রা বেশি সে তাপ বর্জন করবে আর যে বস্তুর তাপমাত্রা কম সে তাপ গ্রহণ করবে। তাপের এই গ্রহণ ও বর্জন চলতে থাকবে যতক্ষণ না সকল বস্তুর তাপমাত্রা সমান হয়।

যদি গ্রহণ ও বর্জনের সময় কোনো তাপ নফ না হয়, তবে বেশি তাপমাত্রার বস্তুগুলো যে পরিমাণ তাপ বর্জন করবে কম তাপমাত্রার বস্তুগুলো সেই পরিমাণ তাপ গ্রহণ করবে।

১০৮

৬.১১ পদার্থের অবস্থার পরিবর্তনে তাপের প্রভাব

Effect of heat on change of state

পদার্থ তিনটি অবস্থায় থাকতে পারে। যেমন— কঠিন, তরল ও বায়বীয়। পানির তিনটি অবস্থা আমরা সকলেই জানি— বরফ, পানি ও জলীয়বাষ্প। এ তিনটি অবস্থাকে যথাক্রমে কঠিন, তরল ও বায়বীয় বলা হয়। পানির এই অবস্থাগুলো নির্ভর করে বায়ুচাপ ও তাপমাত্রার উপর।

কোনো কঠিন পদার্থকে তাপ প্রয়োগ করে তরলে পরিণত করা যায়, একে গলন বলে। প্রথমে তাপ দিলে বস্তুর তাপমাত্রা বাড়তে থাকে এবং এক পর্যায়ে তাপ প্রয়োগ করলেও বস্তুর তাপমাত্রা বাড়ে না। এ সময়ে যে তাপ বস্তু শোষণ করে তা দ্বারা কঠিন পদার্থিটি তরলে পরিণত হয়। $0^0\mathrm{C}$ তাপমাত্রার নিচের বরফকে তাপ দিতে থাকলে তাপমাত্রা বৃদ্ধি পেয়ে $0^0\mathrm{C}$ –এ আসবে। এরপর তাপ দিলে তাপমাত্রা বৃদ্ধি পাবে না কিন্তু বরফ গলে $0^0\mathrm{C}$ তাপমাত্রার পানিতে পরিণত হতে থাকবে। কঠিন অবস্থা থেকে তরল অবস্থায় রূপান্তরের সময় পদার্থ যে তাপ শোষণ করে তা তার আন্তঃআণবিক কম্পন ভাঙতে কাজ করে।

 0^{0} C তাপমাত্রার উক্ত পানিকে আরও তাপ প্রয়োগ করলে তাপমাত্রা বাড়তে থাকে। আবার এক পর্যায়ে এসে পানি যখন জ্বলীয়বান্দো পরিণত হতে থাকে তখন আর তাপমাত্রা বাড়ে না। এই সময় পানি তাপ শোষণ করে বায়বীয় অবস্থায় রূপান্তরিত হয়। এক্ষেত্রেও তরলের আন্তঃআণবিক বন্ধন ভাগুতে তাপের প্রভাব বিদ্যমান। বিপরীতক্রমে বায়বীয় পদার্থ থেকে তাপ অপসারণ করে তাকে প্রথমে তরলে এবং তরল থেকে তাপ অপসারণ করে তাকে কঠিনে পরিণত করা যায়। সূতরাং পদার্থের অবস্থার পরিবর্তনে তাপের প্রভাব উল্লেখযোগ্য।

৬.১২ গলন বাম্পীভবন ও ঘনীভবন

Fusion, vaporization and condensation

গলন

তাপ প্রয়োগে কঠিন পদার্থকে তরলে পরিণত করাকে গলন বলে। যে নির্দিষ্ট তাপমাত্রায় কঠিন পদার্থ গলতে শুরু করে সেই তাপমাত্রাকে গলনাজ্ঞ বলে। সমস্ত পদার্থ না গলা পর্যন্ত এই তাপমাত্রা স্থির থাকে।

বাষ্পীভবন

পদার্থের তরল অবস্থা থেকে বাম্পীয় অবস্থায় পরিণত হওয়ার ঘটনাকে বাম্পীভবন বলে। এই বাম্পীভবন দুইটি পদ্ধতিতে হতে পারে—

- (i) বাষ্পায়ন (Evaporation) ও
- (ii) স্ফুটন (Boiling)

বাষ্পায়ন:

যেকোনো তাপমাত্রায় তরলের শুধুমাত্র উপরিতল থেকে ধীরে ধীরে বান্সে পরিণত হওয়ার প্রক্রিয়াকে বাম্পায়ন বলে।

কর্মকান্ত: একটি বাটিতে কিছুটা পানি নিয়ে তোমার ঘরের এক কোণে রেখে দাও। দুই একদিন পরে দেখ পানির কী হয়েছে? দেখা যাবে বাটির পানি কমে গেছে এই পানি কমার কারণ কী?

ঘরের তাপমাত্রাতেও পানি জলীয়বাম্পে পরিণত হয়েছে। তাই পানি কমে গেছে। এটাই বাম্পায়ন।

স্ফুটন: তাপ প্রয়োগে একটি নির্দিষ্ট তাপমাত্রায় তরলের সকল স্থান থেকে দ্রুত বাস্পে পরিণত হওয়ার ঘটনাকে স্ফুটন বলে। যে নির্দিষ্ট তাপমাত্রায় কোনো তরলের স্ফুটন হয়, তাকে ঐ তরলের স্ফুটনাঙ্ক বলে। স্ফুটনাঙ্কের মান চাপের উপর নির্ভর করে।

পরীকা: যদি কিছু পরিমাণ পানি পাত্রে নিয়ে পরম কর, দেখা যাবে তাপমাত্রা বৃশ্বি পেয়ে পানি একটি নির্দিষ্ট তাপমাত্রায় কুটতে শুরু করেছে এবং জ্পীয় বাজ্পে রূপাশ্তরিত হচ্ছে এটাই স্ফুটন। সূতরাং বোঝা দেশ তরগ যেকোনো তাপমাত্রায় বায়বীয় অবস্থায় ষেতে পারে আবার স্ফুটনাজ্জের তাপমাত্রায়ও বায়বীয় অবস্থায় যেতে পারে।

ষনীভবন : উক্ততার হ্রাস ঘটিয়ে কোনো পদার্থের বায়বীয় অবস্থা থেকে তরল অবস্থায় রূপাশতরিত হওয়ার প্রক্রিয়াকে ঘনীভবন বলে।

৬.১৩ গ্লনাজ্কের উপর চাপের প্রভাব Effect of pressure on boiling points

নিজে করে দেখো: দুই টুকরো বরফকে এক সজো নিয়ে কিছুক্ষণ জোরে চেপে ধরে ছেড়ে দাও। কী দেখতে পাছং টুকরা দুইটি জোড়া দেগে গিয়েছে। কেনং

বরফ ট্করা দৃইটির স্পর্শতলে চাপ পড়ায় সেখানে গলনাজ্ঞ কমে যায় অর্থাৎ গলনাজ্ঞ 0° C এর চেয়ে কম হয়। কিন্তু স্পর্শতলের উষ্ণতা 0° C থাকে। তাই স্পর্শতলের বরফ গলে যায়। গলার জন্য প্রয়োজনীয় তাপ বরফ থেকে সংগৃহীত হবে। চাপ অপসারণ করলে গলনাজ্ঞ পুনরায় 0° C হয়। তাই স্পর্শতলের বরফ গলা পানি জমে বরফে পরিণত হয়। এই কারলে চাপ প্রয়োগ করলে দৃই ট্করা বরফ এক ট্করায় পরিণত হয়। চাপ দিয়ে কঠিন কস্তুকে তরলে পরিণত করে ও চাপ হ্রাস করে আবার কঠিন অকম্থায় আনাকে পুনঃশিশীভবন বলে।

চিত্র : ৬.১০

পদার্থের উপর চাপের হ্রাস-বৃশ্বির জন্য গলনাজ্ঞ পরিবর্তিত হয়। চাপের জন্য গলনাজ্ঞ পরিবর্তন দুইভাবে হতে পারে।

- কঠিন থেকে তরলে রূপান্তরের সময় ষেসব পদার্থের আয়তন হ্রাস পায় (য়য়য়ন বরষ), চাপ বাড়লে তাদের
 গলনাক্ষকমে যায় অর্থাৎ কম তাপমাত্রায় গলে।
- কঠিন থেকে তরলে রূপান্তরের সময় বেসব পদার্থের আয়তন বেড়ে বার (বেমন মোম), চাপ বাড়লে তালের
 গলনাক্ত বেডে বায় অর্থাৎ বেশি তাপমাত্রায় গলে।

৬.১৪ গলনের সুশ্ততাপ ও বাষ্পীভবনের সুশ্ততাপ

Latent heat of fusion and latent heat of vaporisation

গলনের সৃশ্ততাপ: আমরা জানি, তাপ প্রয়োগের ফলে কঠিন পদার্থের তাপমাত্রা যখন গলনাজ্ঞে পৌছায় তখন সম্পূর্ণ পদার্থ তরলে রূপান্তরিত হওয়া পর্যন্ত তাপমাত্রার আর পরিবর্তন হয় না। এখানে যে পরিমাণ তাপ কঠিন পদার্থকে তরল অবস্থায় রূপান্তর করল তাই গলনের সুশ্ততাপ।

এই তাপ বস্তুর তাপমাত্রার পরিবর্তন করে না কিন্তু আন্তঃআণবিক কম্বন শিথিল করতে ব্যয় হয়।

বাষ্পীভবনের সুশ্ততাপ: তরল পদার্থকে তাপ প্রয়োগ করতে থাকলে যখন তাপমাত্রা স্ফুটনাঙ্কে চলে আসে তখন যতই তাপ প্রয়োগ করা হোক না কেন সম্পূর্ণ তরল বাষ্পো রূপান্তরিত হওয়া পর্যন্ত তাপমাত্রা স্থির থাকে। এখানে যে পরিমাণ তাপ তরল পদার্থকে বাষ্পীয় অবস্থায় রূপান্তর করল তাই বাষ্পীভবনের সুশ্ততাপ।

বাষ্পায়নে শীতশতার উদ্ভব: গরমের দিনে নতুন মাটির কলসিতে পানি রাখলে ঐ পানি ঠান্ডা হয়। মাটির কলসির গায়ে অসংখ্য ছিদ্র থাকে ঐ ছিদ্র দিয়ে সর্বদা পানি চুইয়ে বাহিরে আসে ও বাষ্পে পরিণত হয়। এজন্য প্রয়োজনীয় সুক্ততাপ কলসির পানি সরবরাহ করে এবং ঠান্ডা হয়।

কাচ বা পিতলের পাত্রে পানি রাখলে তা ঠান্ডা হয় না। কারণ, ঐ পাত্রের গায়ে ছিদ্র থাকে না এবং বাষ্পায়নের কোনো সুযোগ সৃষ্টি হয় না।

এবার বল তোমার দেহ থেকে যখন ঘাম বের হয়; তখন পাখার বাতাসে ঠান্ডা অনুভূত হয় কেন?

৬.১৫ বিভিন্ন বিষয়ের উপর বাষ্পায়নের নির্ভরশীলতা

Dependence of evaporation on various factors

নিমুলিখিত বিষয়ের উপর বাষ্পায়ন নির্ভর করে:

বায়ু প্রবাহ : তরলের উপর বায়ু প্রবাহ বৃদ্ধি পেলে বাম্পায়ন দ্রুত হয়।

তরলের উপরিতলের

ক্ষেত্রফল : তরলের উপরিতলের ক্ষেত্রফল যত বেশি হয়, বাষ্পায়ন তত দুত হয়।

তরলের প্রকৃতি : বিভিন্ন তরলের বাষ্পায়নের হার বিভিন্ন। তরলের স্ফুটনাচ্চ্চ কম হলে বাষ্পায়নের হার বেশি

হয়। উদায়ী তরলের বাষ্পায়নের হার সর্বাধিক।

তরলের উপর চাপ : তরলের উপর বায়ুমণ্ডলের চাপ বাড়লে বাম্পায়নের হার কমে যায়। চাপ কমলে বাম্পায়নের হার

বাড়ে। শূন্যস্থানে বাষ্পায়নের হার সর্বাধিক।

তরল ও তরল সংল্গু

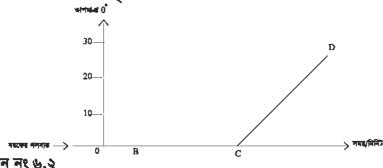
বায়ুর উষ্ণতা : তরল ও তরল সংলগ্ন বায়ুর উষ্ণতা বাড়লে বাষ্পায়ন দুত হয়।

বায়ুর শুষ্কতা : তরল পদার্থের উপরিতলের বাতাস যত শুষ্ক হবে, অর্থাৎ বায়ুতে যত কম পরিমাণ জলীয়

বাষ্প থাকবে বাষ্পায়ন তত দুত হবে। শীতকালে বায়ু শুষ্ক থাকে বলে ভিজা কাপড় তাড়াতাড়ি

শুকায়।

অনুসন্ধান নং ৬.১


व्यक्ति भननाक्क निर्मय।

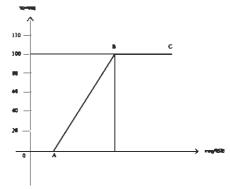
উদ্দেশ্য : বরফের গলন পর্যবেক্ষণ এবং গলনাক্ষের সাথে তাপমাত্রার সম্পর্ক নির্ণয় ও লেখচিত্র অজ্জন।

যল্কগান্তি: সেলসিয়াস থার্মোমিটার, বরফ, স্ট্যান্ড, বার্নার, বিকার, স্টপওয়াচ।

কার্যপান্ধতি : ১. কিছু বরফ নিয়ে চুর্ণ করে একটি বিকারে রাখ।

- ২. পার্মোমিটারকে সতর্কতার সাথে বরফ চূর্ণের মধ্যে ডুবাও যাতে বাল্পটি ব্রফের মধ্যে পাকে কিল্ছু বিকারের গায়ে না লাগে।
- ৩. তাপ প্রয়োগ করে ধীরে ধীরে তাপমাত্রা রেকর্ড করতে হবে।
- প্রতি মিনিটে তাপমাত্রা রেকর্ড কর যতক্ষণ পর্যন্ত সব বরফ না গলে যায়।
- ৫. উপরের নিয়মে বরফ সম্পূর্ণ গলে পানি হবার পরও তাপ দিতে থাকো যতক্ষণ না তাপমাত্রা $20^{\circ}\mathrm{C}$ $25^{\circ}\mathrm{C}$ হয়। প্রতি মিনিটে তাপমাত্রা লিপিবন্দ্ব কর।
- ৬. প্রান্ত তথ্যের আলোকে তাপমাত্রা বনাম সময় লেখচিত্র অঞ্জন কর।
- ৭. শেখচিত্র বা গ্রাফ থেকে বরফের গলনাভক বের কর।
- ৮. লেখচিত্রের প্রকৃতি আলোচনা কর।

অনুসন্ধান নং ৬.২


পরীক্ষার নাম: পানির স্ফুটনাত্ত নির্ণয়।

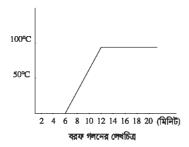
উদ্দেশ্য : পানির স্ফুটন পর্যবেক্ষণ এবং স্ফুটনাচ্চেকর সাথে তাপমাত্রার সম্পর্ক নির্ণয় করা।

যল্ত্রপাতি: থার্মোমিটার, বার্নার, বিকার, স্টপ ওয়াচ।

- কার্ষপদ্ধতি: ১. একটি বিকারে কক্ষ তাপমাত্রার পানি নাও এবং বিকারের পানিতে থার্মোমিটারটি এমনভাবে স্থাপন কর যেন বাল্লটি বিকারের গায়ে না লাগে।
 - ২. বার্নারের সাহায্যে পানিতে তাপ দাও এবং ১ মিনিট পরপর পানির তাপমাত্রা বৃদ্ধি রেকর্ড কর।
 - ৩. লক্ষ কর পানির তাপমাত্রা 100°C হওয়ার পর ভার যতই তাপ বৃদ্ধি করছ তাপমাত্রা বৃদ্ধি পাচ্ছে না।
 - প্রাশ্ত তথ্যের আলোকে তাপমাত্রা—সময় লেখচিত্র অজ্জন কর।
 - ৫. লেখচিত্র থেকে পানির স্ফুটনাভক নির্ণয় কর।
 - ৬. লেখচিত্রের প্রকৃতি আলোচনা কর।

ভাপমাত্রা বনাম সময় লেখচিত্রে (Graph) অঞ্চন।

जन्नी ननी


ক. বহুনির্বাচনী প্রশ্ন

সঠিক উত্তরটির পাশে টিক $(\sqrt{})$ চিহ্ন দাও

- ১। রেল লাইন নির্মাণের সময় দুইটি রেল যেখানে মিলিত হয় সেখানে একটু ফাঁকা রাখা হয় কেন ?
 - ক. লোহা সাশ্রয় করার জন্য।
 - খ. গ্রীষ্মকালে রেললাইনের তাপমাত্রা বৃদ্ধি হ্রাস করার জন্য।
 - গ. রেলগাড়ি চলার সময় খট খট শব্দ করার জন্য।
 - ঘ. তাপীয় প্রসারণের জন্য রেল লাইনের বিকৃতি পরিহার করার জন্য।
- ২। ঘর্মাক্ত দেহে পাখার বাতাস আরাম দেয় কেন ?
 - ক. পাখার বাতাস গায়ের ঘাম বের হতে দেয় না তাই
 - খ. বাষ্পায়ন শীতলতার সৃষ্টি করে তাই
 - গ. পাখার বাতাস শীতল জলীয় বাম্প ধারণ করে তাই
 - ঘ. পাখার বাতাস সরাসরি লোমকৃপ দিয়ে শরীরে ঢুকে যায় তাই।
- ৩। সু**শ্ততাপে**র মাধ্যমে
 - i. বস্তুর তাপমাত্রা বৃদ্ধি হয়।
 - ii. বস্তুর অবস্থার পরিবর্তন হয়।
 - iii. বস্তুর অভ্যন্তরীণ শক্তি বৃদ্ধি পায়।

নিচের কোনটি সঠিক ?

ক. i খ. ii গ. ii ও iii ঘ. i, ii ও iii চিত্রের সাহায্যে ৪ ও ৫ নং প্রশ্নের উত্তর দাও

৪। সম্পূর্ণ বরফ গলতে কত সময় লেগেছিল ?

ক. 2 মিনিট

খ. 4 মিনিট

গ. 6 মিনিট

ঘ. ৪ মিনিট

পেলত পানির তাপমাত্রা স্ফুটনাঙ্কে পৌছাতে প্রয়োজনীয় সময় কত মিনিট

ক. 6

খ. 8

গ. 12

ঘ. 18

খ. সৃজনশীল প্রশ্ন

- ১। দুইটি বৈদ্যুতিক খুটির মধ্যবর্তী দূরত্ব $30~{
 m m}$ । খুটি দুইটির সাথে $30.001{
 m m}$ দৈর্ঘ্যের তামার তার যেদিন সংযোগ দেওয়া হয় ঐ দিন বায়ুর তাপমাত্রা ছিল 30° С । তামার দৈর্ঘ্য প্রসারণ সহগ $16.7 \times 10^{-6}~{
 m K}^{-1}$ । শীতকালে যেদিন বায়ুর তাপমাত্রা 4° C হলো সেদিন তারটি ছিড়ে গেল।
 - ক. পানির ত্রৈধবিন্দুর সংজ্ঞা দাও।
 - খ. দুইটি বস্তুর তাপ সমান হলেও এদের তাপমাত্রা ভিন্ন হতে পারে কি? ব্যাখ্যা কর।
 - গ. বায়ুর তাপমাত্রাকে ফারেনহাইট স্কেলে প্রকাশ কর।
 - ঘ. তারটি ছিড়ে যাবার কারণ গাণিতিক যুক্তিসহ ব্যাখ্যা কর।

সম্ভন অধ্যায় **তর্নজ্ঞা ও শব্দ** WAVES AND SOUND

পুক্রের পানিতে টিল ছুড়ুলে আমরা ভরকা দেখতে পাই। ভরকা শক্তিকে এক স্থান থেকে অন্য স্থানে বয়ে নিয়ে যায়।
শব্দ এক প্রকার ভরকা। শব্দ শক্তি আমাদেরকে শ্রবণের অনুত্তি আগায়। শব্দের মাধ্যমেই আমরা তথ্য প্রেরণ করতে
পারি। তাই শব্দ আমাদের জীবনের সাথে ওতপ্রোভভাবে জড়িত। আবার শব্দ দ্বদ আমাদের মারাত্মক ক্ষতি করে। এই
অধ্যায়ে আমরা ভরকা, শব্দ, শব্দের প্রতিথানি, শব্দের কো, শব্দ দ্বণ প্রভৃতি নিয়ে আলোচনা করব।]

এই অধ্যার পাঠ পেবে আমরা-

- ভরভোর বৈশিক্ট্য ব্যাখ্যা করতে পারব।
- ২. তরজাসংক্রিউ রাশিসমূহের মধ্যে সরন গাণিভিক সম্পর্ক ম্থাপন এবং পরিমাপ করতে পারব।
- শব্দ ভরজোর বৈশিক্ট্য ব্যাধ্যা করতে পারব।
- প্রতিথ্বনি সৃত্তি ব্যাধ্যা করতে গায়ব।
- নৈলিদল জীবলে প্রতিধ্বনির ব্যবহার ব্যাখ্যা করতে গারব।
- শব্দের বেগ, কম্পাক্ত এবং তরকা দৈর্ঘ্যের গাণিতিক সম্পর্ক স্থাপন এবং তা থেকে রাশিসমূহ
 পরিমাপ করতে পারব।
- শব্দের বেগের পরিবর্তন ব্যাব্যা করতে পারব।
- ৮. প্রাব্যভার সীমা ও এদের ব্যবহার ব্যাখ্যা করতে পারব।
- ৯. শব্দের শীচ ও জীক্ষুডা ব্যাধ্যা করতে শারব।
- ১০. শব্দ দৃষণের কারণ ও ফলাফল এবং প্রতিরোধের কৌশল ব্যাখ্যা করতে পারব।

১১৪

৭.১ তরজা

Waves

পুকুরের স্থির পানিতে একটি টিল ছুড়ে মারা হলো। টিলটি যখন পানিতে আঘাত করে তখন ঐ স্থানের পানির কণাগুলো আন্দোলিত হয়। এই আন্দোলিত কণাগুলো পার্শ্ববর্তী স্থির কণাগুলোকে আন্দোলিত করে। এভাবে কণা হতে কণাতে স্থানাস্তরিত হয়ে আন্দোলন অবশেষে পুকুরের কিনারায় গিয়ে পৌছায়। পানির কণাগুলো শুধু উপর নিচে

উঠানামা করে কিম্পু সামনের দিকে অগ্রসর হয় না। প্রত্যেক কণার এই ধরনের গতির ফলে যে গর্যায়বৃদ্ধ আন্দোলন পানির উপর দিয়ে চলে যায় তাকেই তরজা বলে। পানিতে আন্দোলনের কারণে পানির কণাসমূহে যে যামিত্রক শক্তির সৃষ্টি হয় তা কম্পানের মাধ্যমে একস্থান হতে অন্যম্থানে সঞ্চালিত হয়। সূতরাং তরজা ধারা শক্তি একস্থান থেকে অন্যম্থানে সঞ্চালিত হয়।

छिखः १.১

যে পর্যায়বৃত্ত আন্দোলন কোনো জড় মাধ্যমের একস্থান থেকে

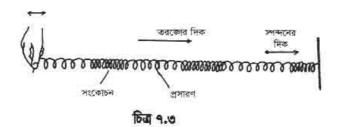
অন্যম্থানে শক্তি সঞ্চালিত করে কিম্ভূ মাধ্যমের কণাগুলোকে স্থায়ীভাবে স্থানাম্ভরিত করে না ভাকে তরজা বলে।

কঠিন, তরল বা গ্যাসীয় মাধ্যমে বে তরভোর উদ্ভব হয় তা যশিত্রক তরভা। পানির তরভা, শব্দ তরভা প্রভৃতি যশিত্রক তরভা। যশিত্রক তরভা সঞ্চালনের জন্য স্থিতিস্থাপক মাধ্যমের প্রয়োজন। আর এক ধরনের তরভা আছে বা সঞ্চালনের জন্য কোনো মাধ্যম লাগে না। এরা হলো তাড়িতটোম্বক তরভা।

উল্লেখ্য যে বর্তমান অধ্যায়ে আমাদের আলোচনা শুধুমাত্র যাশিত্রক তরজ্ঞার মধ্যে সীমাবন্ধ রাধবো। এখানে তরজা কাতে স্থিতিস্থাপক মাধ্যমে সৃষ্ট তরজাকে বুঝবো।

তরভোর বৈশিক্ট্যসমূহ নিম্নর্গ

- মাধ্যমের কণাগুলোর স্পদন গতির ফলে তরজা সৃষ্টি হয় কিন্তু কণাগুলোর স্থায়ী স্থানান্তর হয় না।
- বাশ্রিক তরকা সঞ্চালনের জন্য মাধ্যম প্রয়োজন।
- তরজ্ঞা একস্থান থেকে জন্যস্থানে শক্তি সঞ্চালন করে।
- তরক্ষার বেগ মাধ্যমের প্রকৃতির উপর নির্ভর করে।
- তরজার প্রতিফলন, প্রতিসরণ ও উপরিপাতন ঘটে।

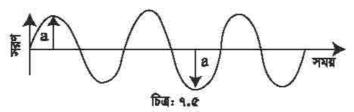

তরভোর প্রকারতেদ

তরজা দৃই প্রকার: ১) অনুপ্রস্থ তরজা ২) অনুদৈর্ঘ্য তরজা।

কাজ: চিত্রের ন্যায় একটা লম্বা দড়ি নাও। দড়ির একপ্রাশত একটি শক্ত অকলম্বনের সাথে আটকাও। অপর প্রাশত ধরে হাত উপর–নিচে বা ডানে–বামে সঞ্চালন কর।

দড়িতে এবার ৭.২ চিজের ন্যায় একটি তরজ্ঞার সৃষ্টি হবে। শক্ষ কর হাতের সঞ্চালন বা কম্পনের দিক উপর—নিচ বা ডানে—বামে কিম্পূ তরজ্ঞার গতির দিক অনুভূমিক। এখানে কম্পনের দিক তরজ্ঞার গতির দিকের সাথে আড়াআড়ি বা প্রস্থ বরাবর। এই তরজ্ঞাই হচ্ছে অনুপ্রস্থ তরজ্ঞা। সূতরাং আমরা কাতে গারি, যে তরজ্ঞা কম্পনের দিকের সাথে লম্ম্বভাবে অপ্রসর হয় তাকে অনুগ্রস্থ তরজ্ঞা বলে। পানির তরজ্ঞা অনুগ্রস্থ তরজ্ঞার উদাহরণ।

একটি স্প্রিংকে ৭.৩ চিত্রের ন্যায় অটকানো হলো। এবার আমরা উক্ত স্থিতির মৃক্ত প্রাশত ধরে চিত্রের ন্যায় সামনে— পিছে হাত সঞ্চালন করি। হাত সামনের দিকে নিলে স্থিত্ত্বি একটি সংকোচন প্রবাহের সৃষ্টি হবে আবার হাত পিছনের দিকে নিশে একটি প্রসারণ প্রবাহের সৃষ্টি হবে। সংকোচন ও প্রসারণ প্রবাহ সামনের দিকে অপ্রসর হতে থাকে। এখানে হাতের সঞ্চালন বা কম্পন যেদিকে তরজাও সেই দিকে অগ্রসর হয়। অর্থাৎ এখানে কম্পনের দিক এবং তরজোর গতির দিক গরস্বার সমাশতরাল বা একই। সূতরাৎ আমরা ক্লতে পারি, যে তরজা কম্পনের দিকের সাথে সমাশতরালভাবে অগ্রসর হয় তাকে অনুদর্খ্য তরজা বলে। বায়ু মাধ্যমে শব্দের তরজা অনুদর্খ্য তরজোর উদাহরণ।

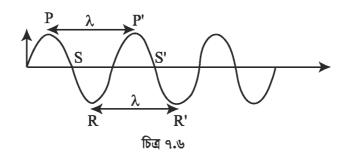

অনুগ্রম্থ তরজ্ঞার সর্বোচ্চ ও সর্বনিমু বিন্দুকে তরজ্ঞাশীর্ষ ও তরজ্ঞাগাদ বলে। অনুদৈর্ঘ্য তরজ্ঞা অনুরুপ রাশি হচ্ছে সংকোচন ও প্রসারণ।

৭.২ ভরকাসংশ্লিফ রাশি

Wave related quantities

পূর্ব স্পন্দন : ভরজোর উপরস্থ কোনো কণা একটি নির্দিন্ট বিন্দু থেকে যাত্রা শুরু করে আবার একই দিক থেকে সেই বিন্দুতে ফিরে এলে তাকে একটি পূর্ণ স্পন্দন বলা হয়

পর্বারকান: যে সময় পরপর তরজোর পুনরাবৃদ্ধি ঘটে। অর্থাৎ যে সময়ে তরজোর উপরস্থা কোন কণার একটি পূর্ণ সম্পন্ন হয় তাকে পর্যায়কাল বলে। পর্যায়কালকে T দারা প্রকাশ করা হয়। এর একক সেকেন্ড (s)।



কশাক্ষ : প্রতি সেকেন্ডে যতগুলো পূর্ণ তরজা সৃষ্টি হয় তাকে তরজোর কশাক্ষ বলে। তরজা সৃষ্টি হয় কশানশীল কন্তু থেকে তাই কশানশীল কন্তুর কশাক্ষ তরজোর কশাক্ষের সমান। কশাক্ষের একক হার্ছ (Hz)। সম্পনশীল কোনো কন্তুকণা এক সেকেন্ডে একটি পূর্ব সম্পন সম্পন্ন করলে তার কশাক্ষকে 1~Hz বলে। একে f হারা প্রকাশ করা হয়। কম্পাক্ষ ও পর্যায়কালের সম্পর্ক হলো $f=\frac{1}{T}$

বিস্ভার : তরভা সৃষ্টি হতে হলে মাধ্যমের কণাগুলোর সাম্যাকথানের দুই পালে কম্পিত হতে হবে। সাম্যাকথান থেকে বেকোনো একদিকে তরভাস্থিত কোন কণার সর্বাধিক সরণকে বিস্তার বলে। ৭.৫ চিত্রে ৫ হলো বিস্তার।

দশা: কোনো একটি তরজ্ঞায়িত কণার যেকোনো মূহুর্তের গতির সামগ্রিক অবস্থা প্রকাশক রাশিকে তার দশা বলে। গতির সামগ্রিক অবস্থা বলতে কণার গতির দিক, সরণ, বেগ,ত্বরণ ইত্যাদি বুঝার। অনুপ্রস্থা তরজ্ঞার উর্ধ্বচ্ড়াসমূহ বা নিমুচ্ড়াসমূহ সর্বদা একই দশায় থাকে।

৭.৬ চিত্রে P এবং P' বা R ও R' অবস্থানের কণাপুলো একই দশার আছে।

তরজ্ঞা দৈর্ঘ্য : তরজ্ঞার উপরস্থ কোনো কণার একটি পূর্ণ কম্পনে যে সময় লাগে সেই সময়ে তরজ্ঞা যেটুকু দূরত্ব অতিক্রম করে তাকে তরজ্ঞা দৈর্ঘ্য বলে। তরজ্ঞার উপর একই দশায় আছে এমন পরপর দুইটি কণার মধ্যবর্তী দূরত্বই তরজ্ঞা দৈর্ঘ্য। তরজ্ঞা দৈর্ঘ্যকে λ দ্বারা চিহ্নিত করা হয়। এর একক মিটার (m)।

চিত্রে PP' বা RR' বা SS' দৈর্ঘ্য হলো তরজ্ঞাদৈর্ঘ্য λ ।

তরক্ষা বেগ: নির্দিষ্ট দিকে তরক্ষা এক সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে তরক্ষা বেগ বলে।

৭.৩ তরজা সংশ্রিষ্ট কয়েকটি সম্পর্ক

A few relations related to wave

কম্পাত্ত্ক ও পর্যায়কালের মধ্যে সম্পর্ক

আমরা জানি স্পন্দনশীল বস্তুকণা 1 সেকেন্ডে যতটা স্পন্দন সম্পন্ন করে তাকে কম্পাজ্ঞ বলে। এই কম্পাজ্ঞকে f দারা সূচিত করা হয়। আবার পর্যায়কাল T হলে

T সেকেন্ডে স্পন্দনের সংখ্যা 1টি

$$1$$
 সেকেন্ডে ,, $\frac{1}{T}$ টি

$$1$$
 সেকেন্ডের এই স্পন্দন সংখ্যাই কম্পান্ডক। সূতরাং কম্পনান্ডক $f=rac{1}{T}$

তরজ্ঞাবেগ ও তরজ্ঞাদৈর্ঘ্যের মধ্যে সম্পর্ক

আমরা জানি 1 সেকেন্ডে যতগুলো পূর্ণস্পদন সম্পন্ন হয় তাকে কম্পাজ্ক বলে। আবার 1 টি পূর্ণ স্পদ্দনের সময়ে তরজ্ঞার অতিক্রান্ত দূরত্বকে তরজ্ঞাদৈর্ঘ্য বলে। সুতরাৎ তরজ্ঞাদৈর্ঘ্য λ হলে,

1 টি পূর্ণ কম্পনের সময়ে তরঞ্চোর অতিক্রান্ত দূরত্ব $=\lambda$

fটি পূর্ণ কম্পনের সময়ে তরঞ্জোর অতিক্রান্ত দূরত্ব = $f\lambda$

যেহেতু কম্পাঙ্ক fতাই fটি পূর্ণ তরঞ্চা তৈরি হয় 1 সেকেন্ডে

সুতরাং 1 সেকেন্ডে তরঞ্চোর অতিক্রান্ত দূরত্ব $=f\lambda$

এটাই তরজ্ঞাবেগ ν । সুতরাং তরজ্ঞা বেগ

$$v = f\lambda \tag{7.2}$$

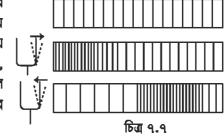
গাণিতিক উদাহরণ ৭.১ : একটি বস্তু বাতাসে যে শব্দ সৃষ্টি করে তার তরক্তা দৈর্ঘ্য $20~{
m cm}$ । বাতাসে শব্দের কো $340~{
m m~s^{-1}}$ হলে এর কম্পান্ড্ক ও পর্যায়কাল বের কর। আমরা জানি,

বেগ,
$$v = f \lambda$$

$$f = \frac{v}{\lambda} = \frac{340 \text{ ms}^{-1}}{0.2 \text{ m}} = 1700 \text{ Hz}$$

$$T = \frac{I}{f} = \frac{1}{1700 \text{ s}^{-1}} = 0.000588 \text{ s}$$

$$= 5.88 \times 10^{-4} \text{ s}$$


নির্ণেয় কম্পান্ত 1700 Hz; পর্যায়কাল $5.88 \times 10^{-4} \text{ s}$

দেওয়া আছে, তরজাদৈর্ঘ্য, $\lambda = 20~{
m cm} = 0.2~{
m m}$ শব্দের কো, $v = 340 \text{ ms}^{-1}$ কম্পান্তক , f=?পর্যায়কাল, T=?

৭.৪ শব্দ তরক্তা

Sound wave

আমরা জানি শব্দ এক প্রকার শক্তি। এই শক্তি সঞ্চালিত হয় শব্দ তরজ্ঞার মাধ্যমে। শব্দ তরজ্ঞা হলো একটি অনুদৈর্ঘ্য তরজা। এই তরজা সঞ্চালনের সময় মাধ্যমের কণাগুলোর বা স্তরসমূহের সংকোচন ও প্রসারণের সৃষ্টি হয় (চিত্র ৭.৭)। মাধ্যম দিয়ে সঞ্চালিত হয়ে এই শব্দতরক্ষা আমাদের কানে এসে শ্রবণের অনুভূতি জ্বাগায়। উক্লেখ্য যে উৎসের কম্পন ছাড়া শব্দের উৎপত্তি হয় না। সুরশলাকা, কাসার বাটি, স্কুলের ঘন্টা যখন বাজে তখন হাত দিয়ে আস্তে আস্তে স্পর্শ করলে বুঝতে পারবে যে ওটা কাঁপছে। যখন তুমি কথা বল তখন যদি তোমার কণ্ঠনালী স্পর্শ কর দেখবে তোমার কণ্ঠনালী কাঁপছে।

কর্মকাঙ্ক : একটি কাঁসার বাটিতে পানি নাও। বাটিকে আঘাত কর। শব্দ পুনতে পাচ্ছো। পানিতে ক্ষুদ্র ক্ষুদ্র ঢেউও দেখতে পাচ্ছো। এবার হাত দিয়ে বাটিটিকে ধরো। শব্দ কি এখন শুনতে পাচ্ছো? পানির ঢেউ কি আছে?

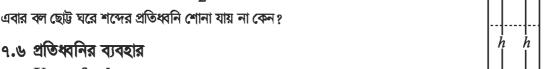
যতক্ষণ বাটিটি শব্দ সৃষ্টি করছিল ততক্ষণ সেটি কেঁপেছে তাই ক্ষুদ্র ক্ষুদ্র তরজ্ঞার সৃষ্টি হয়েছে। বাটিটির শব্দ থেমে গেলে তার কম্পনও থেমে গেছে আর তেউও থেমে গেছে। সূতরাং বোঝা গেল কম্পমান বস্তু শব্দ সৃষ্টি করে। কিন্তু কোনো ক্রতু কাঁপলেই যে আমরা সেই শব্দ শুনতে পারবো এমন কোনো কথা নেই। শব্দের উৎস ও শ্রোতার মাঝে একটি জড় মাধ্যম থাকতে হবে এবং উৎসের কম্পাঙ্ক $20
m H_z$ থেকে $20,000 H_z$ এর মধ্যে হতে হবে।

विवाः १.४

শব্দ তরভোর বৈশিক্ট্য

কোনো বস্তুর কম্পনের ফলে শব্দ তরক্তা সৃষ্টি হয় এবং সঞ্চালনের জন্য স্থিতিস্থাপক জড় মাধ্যমের প্রয়োজন হয়। তাই শব্দকে একটি যাশিত্রক তরজ্ঞা বলা হয়। এই তরজ্ঞার প্রবাহের দিক এবং কম্পনের দিক একই বলে এটি একটি অনুদৈর্ঘ্য তরক্ষা। শব্দ তরক্ষোর কো মাধ্যমের প্রকৃতির উপর নির্ভরশীল। বায়বীয় মাধ্যমে এর কো কম, তরলে তার চেয়ে বেশি, কঠিন পদার্থে আরো বেশি। শব্দের তীব্রতা তরচ্ছোর বিস্তারের বর্গের সমানুপাতিক। অর্থাৎ তরচ্ছোর বিস্তার বেশি হলে শব্দের তীব্রতা বেশি হবে। শব্দ তরজ্ঞার প্রতিফলন, প্রতিসরণ ও উপরিপাতন সম্ভব। শব্দের বেগ মাধ্যমের তাপমাত্রা ও আর্দ্রতার উপরও নির্ভরশীল।

৭.৫ প্রতিধ্বনি


নদীর পাড়ে দাঁড়িয়ে শব্দ করলে কিছুক্ষণ পর সেই শব্দের পুনরাবৃত্তি শোনার অভিজ্ঞতা হয়তো আমাদের অনেকেরই আছে। পাহাড় বা দালানের কাছে জোরে শব্দ করলে অনুরূপ ঘটনা ঘটে। বড় খালি ঘরের একপ্রান্তে ধ্বনি করলে কিছুক্ষণ পর ঠিক সেই শব্দ শোনা যায়। এসব ঘটনা শব্দের প্রতিফলনের জন্য ঘটে।

যখন কোনো শব্দ মূল শব্দ থেকে আলাদা হয়ে মূল শব্দের পুনরাবৃত্তি করে, তখন ঐ প্রতিফলিত শব্দকে প্রতিধ্বনি বলে। সহজ কথায় প্রতিফলনের জন্য ধ্বনির পুনরাবৃত্তিকে প্রতিধ্বনি বলে।

প্রতিফলকের নূন্যতম দূরত্ব

কোনো ক্ষণস্থায়ী শব্দ বা ধ্বনি কানে শোনার পর সেই শব্দের রেশ প্রায় $\frac{1}{10}$ সেকেন্ড যাবৎ আমাদের মস্তিক্ষে থেকে যায়। একে শব্দানুভূতির স্থায়ীত্বকাল বলে। এই $\frac{1}{10}$ সেকেন্ডের মধ্যে অন্য শব্দ কানে এসে পৌঁছালে তা আমরা আলাদা করে শুনতে পাই না। সুতরাং কোনো ক্ষণস্থায়ী শব্দের প্রতিধ্বনি শুনতে হলে প্রতিফলককে উৎস থেকে এমন দূরত্বে রাখতে হবে যাতে মূল শব্দ প্রতিফলিত হয়ে কানে ফিরে আসতে অনতত $\frac{1}{10}$ সেকেন্ড সময় নেয়। যদি $0^0\mathrm{C}$ তাপমাত্রায় বায়ুতে শব্দের বেগ $332~{
m ms}^{-1}$ ধরা হয় তাহলে $\frac{1}{10}$ সেকেন্ডে শব্দ $33.2~{
m m}$ যায়। সুতরাং

প্রতিফলককে শ্রোতা থেকে কমপক্ষে $\frac{33.2}{2}$ m বা 16.6 m দূরত্বে রাখতে হবে।

Uses of echo

ক্পের গভীরতা নির্ণয় : প্রতিধ্বনির সাহায্যে খুব সহচ্চে ক্পের মধ্যে পানির উপরিতল কত গভীরে আছে তা নির্ণয় করা যায়। কূপের উপরে কোনো শব্দ উৎপন্ন করলে সেই শব্দ পানি পৃষ্ঠ থেকে প্রতিফলিত হয়ে ফিরে এলে প্রতিধ্বনি শোনা

যায়। এখন শব্দ উৎপন্ন করা ও সেই শব্দের প্রতিধ্বনি শোনার মধ্যবর্তী সময় থামা ঘড়ির সাহায্যে নির্ণয় করা যায়। ধরা যাক, পানি পৃষ্ঠের গভীরতা h,

শব্দ উৎপন্ন করা ও প্রতিধ্বনি শোনার মধ্যবর্তী সময় t,

শব্দের বেগ v,

এখন শব্দ উৎপন্ন হওয়ার পর পানি পৃষ্ঠে প্রতিফলিত হয়ে শ্রোতার কাছে ফিরে আসতে যেহেতু 2h দূরত্ব অতিক্রম করে অতএব, $2h = v \times t$

কুপের পানি পৃষ্ঠের গভীরতা 16.6 মিটারের কম হলে, প্রতিধ্বনি ভিত্তিক এই পরীক্ষাটি করা সম্ভব হবে না। একইভাবে ভূগর্ভের খনিজ পদার্থের সন্ধান লাভে এ পন্ধতি ব্যবহার হচ্ছে।

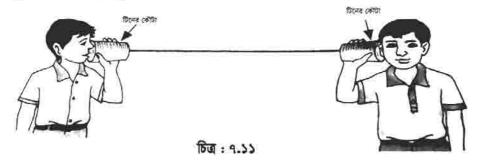
বাদুরের পথচলা

শব্দের প্রতিধ্বনির সাহায্যেই বাদুর পথ চলে। বাদুর চোখে দেখে না। বাদুর শব্দোন্তর কম্পাজ্ঞের শব্দ তৈরি করতে পারে আবার শুনতেও পারে।এই শব্দ আমরা শুনতে পাই না। বাদুর শব্দোন্তর কম্পাজ্ঞের শব্দ তৈরি করে সামনে ছড়িয়ে দেয়। ঐ শব্দ কোনো প্রতিকশ্বকে বাধা পেরে আবার বাদুরের কাছে চলে আসে।ফিরে আসা শব্দ শুনে বৃথতে পারে যে সামনে কোনো বস্তু আছে কিনা। বাদুর এভাবে তার শিকারও ধরে। যদি বাধা পেয়ে শব্দ

কিরে না আসে তবে বৃঝতে পারে যে কাঁকা জায়গা আছে, সেই পথ বরাবর সে উড়ে চলে। অনেক সময় বাদুর বৈদ্যুতিক তারের সঠিক অবস্থান নির্ণয় করতে ব্যর্থ হয়। ফলে সমাশ্তরাল দুই তারের মধ্য দিয়ে উড়ে চলার সময় যখনই ধনাতাক ও ঋণাতাক তার (বা সক্রিয় ও নিরপেক তার) বাদুরের শরীরের মাধ্যমে সহযোগ পেরে যায় তখনই বাদুরের শরীরের মধ্য দিয়ে বিদ্যুৎ প্রবাহিত হয় আর সে মারা যায়। এজন্য মাঝেমধ্যে বৈদ্যুতিক তারে ঝুলশত মরা বাদুর দেখা যায়।

বাদুর প্রায় 1,00000 হার্দ্ধ কম্পাঞ্জের শব্দ তৈরি করতে ও শুনতে পারে।

৭.৭ শব্দের বেগের পরিবর্তন


Variation of velocity of sound

শব্দ উৎস থেকে আমাদের কানে শব্দ আসতে কিছুটা সময় নেয়। প্রতি সেকেন্ডে শব্দ যতটা পথ অতিক্রম করে তাকে। শব্দের বেগ বলে। শব্দের কো কয়েকটি বিষয়ের উপর নির্ভর করে।

মাধ্যমের প্রকৃতি : বিভিন্ন মাধ্যমে শব্দের বেগ বিভিন্ন । উদাহরণস্বরূপ বায়ু, পানি এবং শোহাতে শব্দের বেগ ভিন্ন ভিন্ন । $20^0\mathrm{C}$ ভাপমাত্রায় বায়ুভে শব্দের বেগ $344~\mathrm{m~s^{-1}}$, পানিতে $1450~\mathrm{m~s^{-1}}$, জার শোহায় $5130~\mathrm{m~s^{-1}}$ । সাধারণভাবে বলা যায় বায়ুভে শব্দের বেগ কম,ভরলে ভার চেয়ে বেশি আর কঠিন পদার্থে সবচেয়ে বেশি ।

নিজেরা কর : দুইটি থালি টিনের কোঁটা নাও। প্রায় বিশ মিটার লম্বা চিকন তার হারা কোঁটা দুইটিকে সংযুক্ত কর। তোমার কম্ব একটা কোঁটায় মুখ লাগিয়ে কথা কাছে। অপর কোঁটায় ভূমি কান লাগিয়ে সেই কথা শোনার চেক্টা কর।

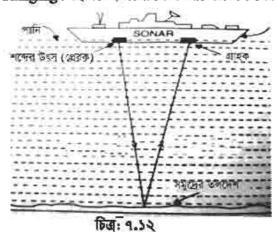
ভূমি কি কথা শূনতে পারবে? হাাঁ শূনতে পারবে। কারণ এখানে শব্দ সঞ্চাণিত হচ্ছে তার দারা যা একটি কঠিন পদার্থ।

১২**০** পদার্থবিজ্ঞান

ভাগরান্ত্রা: বায়ুর ভাগমান্ত্রা যত বাড়ে বায়ুতে শব্দের কোও তত বাড়ে। এছন্য শীতকাল অপেকা শ্রীমকালে শব্দের কো বেশি।

হিলাব ৰুৱ : 20° C ভাপমাত্রায় বায়ুভে শব্দের বেশ $344~\mathrm{m~s^{-1}}$ । 0° C ভাপমাত্রায় বেশ $332~\mathrm{m~s^{-1}}$ । প্রক্তি 1° C ভাপমাত্রা বৃশ্বিতে বায়ুভে শব্দের বেশ কডটুকু বৃশ্বি পার ?

ৰায়্র অর্দ্রেভা: বায়্র আর্দ্রেভা বৃশ্বি পেলে শব্দের বেগ বৃশ্বি পায়। এজন্য শৃক্ক বায়্র চেয়ে ভেজা বায়ুতে শব্দের বেগ বেশি।


৭.৮ শ্রাব্যভার সীমা ও এদের ব্যবহার

Audibility range and its uses

আমরা জানি, বস্তুর কম্পন ছাড়া শব্দ উৎপন্ন হয় না। বদি কোনো বস্তু প্রতি সেকেন্ডে কমপক্ষে 20 বার কাঁপে তবে সেই কম্পু থেকে উৎপন্ন শব্দ পোনা বাবে। এভাবে আবার কম্পন যদি প্রতি সেকেন্ডে 20,000 বার এর বেশি হর তাহদেও শব্দ পোনা বাবে না। সূত্রাং আমাদের কানে যে শব্দ পোনা যায় তার কম্পাক্ষের সীমা হলো 20 Hz থেকে 20,000 Hz। কম্পাক্ষের এই পাল্লাকে প্রাব্যতার পাল্লা (Audible Range) বলে। যদি কম্পাক্ষ 20 Hz এর কম হয় তবে তাকে পন্দেতর (Infrasonic) কম্পন বলে। যদি কম্পাক্ষ 20,000Hz এর বেশি হয় তবে তাকে পন্দোভর (Ultrasonic) কম্পন বলে। শব্দোভর কম্পাক্ষের পদ মানুবে শূনতে না পেলেও বাদুর, কুকুর, মৌমাছির ন্যায় কিছু কিছু প্রাণী এ শব্দ উৎপন্ন করতে পারে আবার শূনতেও পারে।

শব্দোন্তর শব্দের প্ররোগ ও ব্যবহার

সমূদ্রের গভীরতা নির্ণন্ধ: সমূদ্রের গভীরতা নির্ণায়ের জন্য SONAR নামক বলতা কাবহুত হয়। SONAR এর পুরো নাম Sound Navigation And Ranging।এই বলেত্র শব্দোন্ডর কম্পাক্তের শব্দ প্রেরণ ও গ্রহণের ক্যকথা ভাছে।

গানির মধ্যে এই যদেত্রর সাহায্যে শন্দোন্তর কম্পাচ্ছের শব্দ উৎপন্ন করে প্রেরণ করা হয়। এই শব্দ সমুদ্রের ভগদেশে বাধা পেরে জাবার উপরে উঠে জাসলে গ্রাহক যদেত্রর সাহায্যে গ্রহণ করা হয়। শব্দ প্রেরণ ও গ্রহণের সময় রেকর্ড করে বিরোগ করলে শব্দের স্থানকাল বের করা বায়। ধরা যাক এই সময় ৫ এবং সমুদ্রের গতীরতা ৫। যদি পানিতে শব্দের বেগ ν হয় তবে,

$$2d = v \times t$$

or,
$$d = \frac{v \times t}{2} \tag{7.4}$$

শব্দ যাগুয়া ও আসা মিলে d+d=2d শধ্ম অভিক্রম করে। এখন শব্দের বেগ জ্বেনে উপরের সমীকরণের সহায্যে সমূদ্রের গভীরভা নির্ণয় করা যায়।

কাপড়ের ময়লা গরিক্কার করা: আজকাল আধুনিক ওয়াশিং মেশিন বের হরেছে যার হারা সহজে কাপড় পরিক্কার করা যায়। গানির মধ্যে সাবান বা গুড়ো সাবান মিশ্রিত করে কাপড় ভিচ্চিয়ে রেখে সেই গানির মধ্যে শব্দোন্তর কম্পনের শব্দ প্রেরণ করা হয়। এই শব্দ কাপড়ের ময়লাকে বাইরে বের করে আনে এবং কাপড় পরিক্কার হয়ে যায়।

রোগ নির্ণরে : মানুষের দেহের অভ্যানতরীণ ছবি এক্সরে হারা যেমন তোলা যায় তেমন শব্দান্তর কম্পানের শব্দের সাহায্যে ছবি তুলে রোগ নির্ণয় করা যায়। এই প্রক্রিয়ার নাম আন্ট্রাসনোপ্রকি (Ultrasonography)। এই শব্দ দেহের অভ্যানতরে প্রেরণ করা হয় এবং প্রতিফলিত শব্দকে আলোক শক্তিতে রুপানতর করে টেলিভিশনের পর্ণায় ফেলা হয়। কলে কোনো রোগ থাকলে ধরা পড়ে।

চিকিৎসা কেত্রে: দাঁতের কেকশিং বা গাধর তোগার জন্য শব্দোন্তর কম্পনের শব্দ ব্যবহৃত হয়। কিন্দনির ছোট গাধর তেঙে গুড়া করে তা অপসারশের কাজেও এই শব্দ ব্যবহৃত হয়।

অন্যান্য কাজে: ধাতব শিশু বা পাতে সৃত্বতম ফাটন অনুসম্পানে,সৃত্ব ইলেকট্রনিক বন্দ্রগাতি পরিষ্কার করার কাজে, ক্ষতিকর রোগজীবাণু ধবংসের কাজেও শন্দোন্তর কম্পানের শব্দ ব্যবহুত হয়।

শব্দেতর কম্পাক্ষের শব্দের ব্যবহার :

শব্দেতর কম্পনের সীমা হচ্ছে 1 Hz থেকে 20 Hz। এই কম্পনের শব্দ মানুব শুনতে পায়না ভবে কোনো কোনো জীবজক্ত শুনতে পায়। হাভি এই কম্পনের শব্দ দায়া নিজেদের মধ্যে যোগাযোগ রক্ষা করে চলে। কোনোর্গ বিকৃতি ছাড়া এই শব্দ বহুদূর গর্যন্ত যেতে পারে। ভূমিকম্প একং গায়মাণবিক বিস্কোরণের সময় এই শব্দেতর কম্পনের সৃষ্টি হয় এবং প্রকা ঝাঝুনির মাধ্যমে ধক্সে বজ্ঞ চালায়।

চিত্র: ৭.১৩ গাণিভিক উদাহরণ ৭.২ : নদীর এক পাড়ে দাঁড়িয়ে এক ব্যক্তি হাততালি দিল। ঐ শব্দ নদীর অপর পাড় থেকে ফিরে এসে $1.5~\mathrm{s}$ পর প্রতিষ্ঠানি শোনা পেল। ঐ সময় বায়ুতে শব্দের বেগ $340~\mathrm{m}~\mathrm{s}^{-1}$ হলে নদীটির প্রশস্ততা কত?

সমাধান : ধরা যাক নদীর প্রশস্ততা d। সূতরাং আমরা পাই,

$$2d = v \times t$$

অতথ্য $d = \frac{v \times t}{2}$

$$= \frac{340 \text{ m s}^{-1} \times 1.5 \text{ s}}{2}$$

$$= 255 \text{ m}$$

সূতরাং নদীর প্রশস্ততা 255 m

এখানে,
বেগ
$$v = 340 \text{ m s}^{-1}$$

সময় $t = 1.5 \text{ s}$,
প্রশস্কতা $d = ?$

৭.৯ সুরযুক্ত শব্দ ও তার বৈশিষ্ট্য

Musical sound and its characteristics

আমরা প্রতিদিন বহুরকম শব্দ শুনতে পাই। রাস্তা দিয়ে যানবাহন চলাচলের শব্দ, হাটবাজারের শব্দ,বর্ষাকালে বৃষ্টি পড়ার শব্দ,বিভিন্ন বাদ্যযদেত্রর শব্দ ইত্যাদি আমরা প্রতিদিন শুনে থাকি। এসকল শব্দের কিছু কিছু শুনতে শ্রুতিমধুর লাগে আর কিছু কিছু শুনতে শ্রুতিকটু লাগে। অনুভূতির দিক দিয়ে বিচার করলে শ্রুতিমধুর শব্দ হচ্ছে সুরযুক্ত শব্দ। মূলত শব্দ উৎসের নিয়মিত ও পর্যায়বৃত্ত কম্পনের ফলে যে শব্দ উৎপন্ন হয় এবং যা আমাদের কানে শ্রুতিমধুর বলে মনে হয় তাকে সুরযুক্ত শব্দ বলে। গিটার, বেহালা, বাশের বাঁশি প্রভৃতি বাদ্যযদেত্রর শব্দ সুরযুক্ত শব্দ।

সুরযুক্ত শব্দের বৈশিষ্ট্য

সুরযুক্ত শব্দের তিনটি বৈশিষ্ট্য আছে– প্রাবল্য বা তীব্রতা (Loudness or Intensity), তীক্ষ্ণতা (Pitch) এবং গুণ বা জাতি (Quality or Timbre)।

প্রাবল্য বা তীব্রতা: প্রাবল্য বা তীব্রতা বলতে শব্দ কতটা জোরে হচ্ছে তা বুঝায়। শব্দ বিস্তারের অভিমুখে লম্বভাবে রাখা একক ক্ষেত্রফলের মধ্য দিয়ে প্রতি সেকেন্ডে যে পরিমাণ শব্দ শক্তি প্রবাহিত হয় তাকে শব্দের তীব্রতা বলে। SI প্র∐ তিতে শব্দের তীব্রতার একক Wm⁻²।

তীক্ষ্ণতা: সুরযুক্ত শব্দের যে বৈশিষ্ট্য দিয়ে একই প্রাবল্যের খাদের সুর এবং চড়া সুরের মধ্যে পার্থক্য বুঝা যায় তাকে তীক্ষ্ণতা বা পীচ বলে। তীক্ষ্ণতা উৎসের কম্পাঙ্কের উপর নির্ভর করে। কম্পাঙ্ক যত বেশি হয়, সুর তত চড়া হয় এবং তীক্ষ্ণতা বা পীচ তত বেশি হয়।

গুণ বা জাতি: সুরযুক্ত শব্দের যে বৈশিষ্ট্যের জন্য বিভিন্ন উৎস থেকে উৎপন্ন একই প্রাবল্য ও তীক্ষ্ণতাযুক্ত শব্দের মধ্যে পার্থক্য বুঝা যায় তাকে গুণ বা জাতি বলে।

পুরুষের গলার স্বর মোটা কিন্তু নারী ও শিশুর গলার স্বর তীক্ষ্ণ কেন?

মানুষের গলার স্বরয়ন্ত্রে দুইটি পর্দা আছে এদেরকে বলে স্বরতন্ত্রী বা Vocal Chord। এই ভোকাল কর্ডের কম্পনের ফলে গলা থেকে শব্দ নির্গত হয় এবং মানুষ কথা বলে। বয়স্ক পুরুষদের ভোকাল কর্ড বয়সের সজ্ঞো সজ্ঞো দৃঢ় হয়ে পড়ে। কিন্তু শিশু বা নারীদের ভোকাল কর্ড দৃঢ় থাকে না ফলে বয়স্ক পুরুষদের গলার স্বরের কম্পাজ্ঞ্ক কম এবং নারী বা শিশুদের স্বরের কম্পাজ্ঞ্ক বেশি হয়। তাই পুরুষদের গলার স্বর মোটা কিন্তু শিশু বা নারীদের কন্ঠস্বর তীক্ষ্ণ।

৭.১০ শব্দ দূষণ

Noise pollution

পারস্পরিক যোগাযোগ ও ভাব আদানপ্রদানের জন্য শব্দ প্রয়োজন। কিন্তু অপ্রয়োজনীয় শব্দ ও কোলাহল অসহ্য লাগে। বিভিন্ন উৎস থেকে উৎপন্ন জোরালো এবং অপ্রয়োজনীয় শব্দ যখন মানুষের সহনশীলতার মাত্রা ছাড়িয়ে বিরক্তি ঘটায় এবং স্বাস্থ্যের ক্ষতিসাধন করে তখন তাকে শব্দ দৃষণ বলে।

মাইকের অবাধ ব্যবহার, ঢোলের শব্দ, বোমাবাজি, পটকা ফোটানোর আওয়াজ, কল কারখানার শব্দ, গাড়ির হর্নের আওয়াজ, উচ্চ ভলুমে চালিত টেপ রেকর্ডার ও টেলিভিশনের শব্দ, পুরনো গাড়ির ইঞ্জিনের শব্দ, উড়োজাহাজ ও যুল্ধ বিমানের তীব্র শব্দ প্রভৃতি শব্দ দৃষণের প্রধান কারণ।

অবিরাম তীব্র শব্দ মানসিক উত্তেজনা বাড়ায় ও মেজাজ খিটখিটে করে। শব্দ দূষণ বিম বিম ভাব, ক্ষুধা মন্দা, রক্তচাপ বৃদ্ধি, হুদপিন্ড ও মিতিন্ফের জটিল রোগ, অনিদ্রাজনিত অসুস্থাতা, ক্লান্তি ও অবসাদগ্রস্থ হয়ে পড়া, কর্মক্ষমতা হ্রাস, মৃতিশক্তি হ্রাস, মাথা ঘোরা প্রভৃতি ক্ষতিকারক প্রভাব সৃষ্টি করে। হঠাৎ তীব্র শব্দ মানুষের শ্রবণশক্তি নন্ট করতে পারে।

বর্তমানে শব্দ দূষণ মারাত্মক সমস্যার সৃষ্টি করছে। এর কবলে পড়ে প্রায়ই অসুস্থ রোগী এবং পরীক্ষার্থীরা ক্ষতিগ্রস্থ হচ্ছে। শব্দ দূষণের হাত থেকে বাচাঁর উপায় হলো শব্দ কমানো। এ প্রসঞ্জো আমরা কিছু পদক্ষেপ গ্রহণ করতে পারি। যেকোনো উৎসব বা অনুষ্ঠানে উচ্চস্বরে মাইক বাজানো থেকে বিরত থাকতে হবে। উৎসবে পটকা, বাজি ফুটানো নিষিন্ধ করতে হবে। গাড়ির হর্ন অযথা বাজানো বা জোরে বাজানো পরিহার করা উচিত। কম শব্দ উৎপাদনকারী ইঞ্জিন বা যন্ত্রপাতি তৈরি এবং লোকালয় থেকে দূরে কলকারখানা ও বিমান ক্দর স্থাপন করেও আমরা শব্দদূষণের হাত থেকে রেহাই পেতে পারি। শহরের মাঝে মাঝে উন্যুক্ত জায়গা রাখা এবং রাস্তার ধারে গাছপালা লাগানো উচিত। কলকারখানায় শব্দ শোষণ যন্ত্রের ব্যবহার চালু করে এবং জনসচেতনতা বৃদ্ধি করে শব্দ দূষণ নিয়ন্ত্রণ করা সম্ভব।

অনুশীলনী

ক.বহুনির্বাচনী প্রশ্ন

সঠিক উত্তরটির পাশে টিক $(\sqrt{})$ চিহ্ন দাও

১। শব্দ কোন ধরনের তরজা?

11 6411 48618 0801

ক. তির্যক তরজ্ঞা খ. তাড়িতটৌম্বক তরজ্ঞা

গ. অনুদৈর্ঘ্য তরজ্ঞা ঘ. বেতার তরজ্ঞা

২। শব্দের বেগ কোন মাধ্যমে সবচেয়ে বেশি।

ক. কঠিন গ. গ্যাসীয় ঘ. প্লাজমা

- ৩। বৈদ্যুতিক লাইনে মৃত বাদুর ঝুলে থাকতে দেখা যায় কেন ?
 - i. বৈদ্যুতিক তারগুলোর অবস্থান এবং মধ্যবর্তী দূরত্ব সম্পর্কে তাৎক্ষণিকভাবে সুস্পষ্ট ধারণা না থাকায়।
 - ii. সামনের দিকের শব্দোত্তর তরঞ্চোর প্রতিধ্বনি শুনতে না পাওয়ায়।
 - iii. বাদুর একটি তারে ঝুলে অপর তারটি স্পর্শ করায়।

নিচের কোন উত্তরটি সঠিক

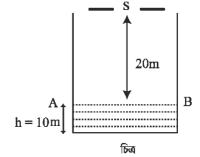
ক. i ও ii

খ. i ও iii

গ. ii ও iii

ঘ. i, ii ও iii

চিত্রে S একটি শব্দ উৎস এবং AB পানির পৃষ্ঠতল। শব্দের বেগ $332~{
m m~s^{-1}}$ ধরে নিয়ে এবং পার্শ্বের তথ্য ও চিত্রের ভিন্তিতে 8 ও ৫ নং প্রশ্নের উত্তর দাও।


৪. পানির উচ্চতা h এর মান সর্বোচ্চ কত পর্যন্ত প্রতিধ্বনি শোনা যাবে ?

ক. 13.40 cm

খ. 13.40 m

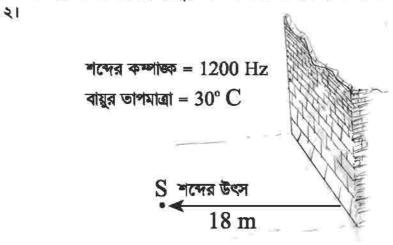
ช. 3.4 m

ঘ. 3.4 cm

৫. প্রদত্ত চিত্রের ক্ষেত্রে প্রতিধ্বনি শুনতে কত সময় প্রয়োজন হবে ?

季. 0.10 s

₹. 0.12 s


গ. 0.14 s

খ. 0.18 s

ধ. সৃজনশীৰ গ্ৰন্ন

১। রাফসান দশম শ্রেণির নির্বাচনী পরীক্ষা দিছে। পরের দিন তার পদার্থবিজ্ঞান পরীক্ষা। পাশের বাড়িতে বিরের অনুষ্ঠান। সেথানে রাত দুইটা পর্যন্ত জোরে জোরে গান বাজলো।উচ্চ শব্দের জন্য তার পড়াশুনার দার্ল ব্যাঘাত ঘটলো। তার বাবা উচ্চরক্তচাপের রোগী। তাঁরও অসুবিধা হলো।

- ক. শদদ্যণ কী ?
- খ. শব্দদূরণের কারণ ব্যখ্যা কর।
- গ. রাফসানের বাবার কী অসুবিধা হতে পারে এবং এ প্রসক্ষো জনস্বাম্থ্যে শব্দ দৃষণের প্রভাব শিখ।
- ঘ. রাফসানের এলাকায় শব্দদূষণ প্রতিরোধে কী কী ব্যবস্থা নেওয়া যেতে পারে?

- ক) পর্যায়বৃত্ত গতি কাকে বলে?
- খ) পানির ঢেউ অনুপ্রস্থ তরজ্ঞা কেন ? ব্যাখ্যা কর
- গ) শব্দের তরজ্ঞা দৈর্ঘ্য নির্ণয় কর।
- ঘ) S অবস্থান থেকে প্রতিধ্বনি শোনা সম্ভব কি? গাণিতিক যুক্তিসহ যাচাই কর।

অফ্টম অধ্যায়

আলোর প্রতিফলন REFLECTION OF LIGHT

্ আমরা আমাদের চারপাশে নানারকম বস্তু দেখতে পাই। যখন কোনো আলোক উৎস থেকে আলো সরাসরি আমাদের চোখে আসে তখন আমরা উৎসটি দেখতে পাই। আবার আলোক উৎস থেকে নির্গত আলো কোনো বস্তুর পৃষ্ঠ থেকে প্রতিফলিত হয়ে যখন আমাদের চোখে আসে তখনও আমরা বস্তুটি দেখতে পাই। আলো হচ্ছে এক প্রকার শক্তি বা বাহ্যিক কারণ যা আমাদের দেখতে সাহায্য করে বা দর্শনের অনুভূতি সৃক্টি করে। এ অধ্যায়ে আমরা আলোর প্রকৃতি, দর্শণ, আলোর প্রতিফলনের স্ত্রাবলী, দর্শণের প্রকারভেদ, দর্শণে কীভাবে প্রতিবিন্দ্ব সৃক্টি হয়, দর্শণের ব্যবহার ও প্রতিবিন্দ্বর বিবর্ধন সম্পর্কে আলোচনা করব।

এই অধ্যায় পাঠ শেবে আমরা-

- ১. আলোর প্রকৃতি ব্যাখ্যা করতে পারব।
- আলোর প্রতিফলনের সূত্র ব্যাখ্যা করতে পারব।
- দর্পণ ব্যাখ্যা করতে পারব।
- প্রতিবিন্দ ব্যাখ্যা করতে পারব।
- অালোক রশ্মির ক্রিয়ারেখা অভ্জন করে দর্পণে সৃষ্ট প্রতিবিম্ব ব্যাখ্যা করতে পারব।
- দর্পণে প্রতিবিস্ব সৃষ্টির কিছু সাধারণ ঘটনা ব্যাখ্যা করতে পারব।
- দর্পণের ব্যবহার ব্যাখ্যা করতে পারব।
- ি বিবর্ধন ব্যাখ্যা করতে পারব।
- প্রতিবিম্প সৃষ্টি প্রদর্শন করতে পারব।
- ১০. আমাদের জীবনে বিভিন্ন আলোকীয় ঘটনার প্রভাব এবং এদের অবদান উপলব্ধি করতে পারব এবং প্রশংসা করতে পারব।

৮.১ আলোর প্রকৃতি Nature of light

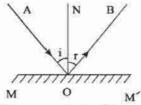
আমরা জানি, আলো হলো এক প্রকার শক্তি যার মাধ্যমে আমরা কোনো বস্তু দেখতে পাই। আমরা যখন কোনো বস্তু দেখি, তখন বস্তু থেকে আলো আমাদের চোখে আসে। চোখে প্রবিষ্ট আলো চোখের রেটিনায় বস্তুটির প্রতিবিন্দ সৃষ্টি করে এবং জটিল প্রক্রিয়ার মাধ্যমে আমাদের মস্তিকে বস্তুটির অনুরূপ একটি বস্তুর অনুত্তি সৃষ্টি করে। প্রাচীনকাল হতে মানুব আলোর প্রকৃতি সম্পর্কে জ্ঞান লাভের চেন্টা করে আসছে। এক সময় ধারণা করা হতো আমাদের চোখ হতে আলো কোনো বস্তুর উপর পড়ে, তাই আমরা সেই বস্তু দেখতে পাই। আসলে যখন কোনো বস্তু থেকে আলো আমাদের চোখে আসে, তখনই কেবল আমরা সেই বস্তু দেখতে পাই। আলোর প্রধান প্রধান ধর্মগুলো নিমুরুপ:

- ১. কোনো স্বচ্ছ সমসত্ত্ব মাধ্যমে আলো সরলপথে চলে।
- ২. কোনো নির্দিষ্ট মাধ্যমে আলো একটি নির্দিষ্ট বেগে চলে। শূন্যম্থানে এই বেগের মান, $c=3 imes 10^8 \ m \ s^{-1}$ ।
- ৩. আলোর প্রতিফলন, প্রতিসরণ, ব্যতিচার, অপবর্তন, বিচ্ছুরণ এবং সমবর্তন ঘটে।
- আলো এক প্রকার শক্তি।
- আলাে এক ধরনের তাড়িতটৌম্বক তরজা।
- ৬. কোনো কোনো ঘটনায় আলো তরজ্ঞার ন্যায়, আবার কথনো কথনো আলো কণার ন্যায় আচরণ করে।

৮.২ আলোর প্রতিফলন

Laws of reflection of light

আমরা আমাদের চারপাশে অনেক রকম বস্তু দেখে থাকি। এদের কোনোটি চারদিকে আলো ছড়ায় আবার কোনোটি আলো ছড়ায় না। যে সকল বস্তু যেমন—সূর্য,তারা, জলত মোমবাতি, নক্ষত্র ইত্যাদি নিজে থেকে আলো নিঃসরণ করে তাদেরকে বলা হয় দীপ্তিমান বস্তু। আবার যে সকল বস্তু যেমন— মানুষ, গাছপালা, টেবিল, দেয়াল, ছবি, চক বোর্ড ইত্যাদির নিজের আলো নেই বা নিজে আলো নিঃসরণ করতে পারে না তাদেরকে বলা হয় দীপ্তিহীন বস্তু। যখন দীপ্তিমান বস্তু থেকে আলো আমাদের চোখে আসে তখন আমরা সেই বস্তুটি দেখতে পাই। আমাদের চারপাশে যে সকল সাধারণ বস্তু দেখতে পাই সেগুলো দীপ্তিমান বস্তু নয়, তবুও আমরা সেগুলো দেখতে পাই। এর কারণ হচ্ছে আলোর প্রতিক্ষান। ৮.১ চিত্রে তোমরা দেখতে পাছে। কীভাবে আমরা একটি দীপ্তিমান বস্তু (সূর্য) এবং একটি দীপ্তিহীন বস্তুকে (বিড়াল) দেখতে পাছি। চোখ দীপ্তিমান বস্তুটিকে দেখতে পায় কেননা এটি থেকে আলো সরাসরি চোখে প্রবেশ করে। বীপ্তিমান বস্তু থেকে আসা আলো বিড়াল থেকে প্রতিক্ষানত হয়ে আমাদের চোখে প্রবেশ করে বলে বিড়ালটি আমরা দেখতে পাই।

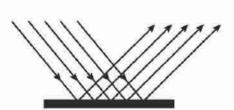


একটি স্বচ্ছ ও সমসন্ত্র মাধ্যমে (যেমন-কাচ) আলোকরশ্মি সরলপথে এবং একই বেগে চলে। কিন্তু আলোকরশ্মি যখন এক মাধ্যম দিয়ে চলতে চলতে অন্য এক মাধ্যমের কোনো তলে আপতিত হয় তখন দুই মাধ্যমের বিভেদতল হতে কিছু পরিমাণ আলো আবার প্রথম মাধ্যমে কিরে আসে। এ ঘটনাকে আলোর প্রতিকলন বলে। যে পৃষ্ঠ হতে আলোকরশ্মি প্রতিকলিত হয়ে ফিরে আসে তাকে প্রতিকলক পৃষ্ঠ বলে।

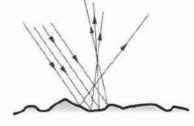
প্রতিক্শনের সূত্র

আপতিত রশ্মি এবং প্রতিফলিত রশ্মি দুইটি সহজ সূত্র মেনে চলে–

- প্রথম সৃত্তঃ আপতিত রশ্মি, প্রতিফলিত রশ্মি এবং আপতন বিন্দৃতে প্রতিফলকের উপর অভিকত অভিলন্দ একই
 সমতলে অবস্থান করে।
- ছিতীয় সূত্র: প্রতিফলন কোণ আপতন কোণের সমান হয়।


চিত্র ৮.২: আলোর প্রতিফলন

যখন আলো কোনো পৃষ্ঠ থেকে প্রতিকলিত হয় তখন তা অবশ্যই প্রতিকলনের সূত্র মেনে চলে। কোনো পৃষ্ঠ থেকে কীভাবে আলো প্রতিফলিত হবে তা নির্ভর করে প্রতিকলকের পৃষ্ঠের প্রকৃতির উপর। প্রতিফলক পৃষ্ঠের প্রকৃতির উপর নির্ভর করে প্রতিফলনকে দুইভাগে ভাগ করা যায়। যথা—


- ১. নিয়মিত বা সুষম প্রতিফলন
- ২. ব্যাপ্ত বা অনিয়মিত প্রতিফলন

১. নিয়মিত প্রতিফলন

যদি একগৃছে সমান্তরাল আলোকরশ্মি কোনো মসৃণ তলে আপতিত হয়ে প্রতিফলনের পর সমান্তরাল রশ্মিগৃছে বা অতিসারী বা অপসারী রশ্মিগৃছে পরিণত হয় তবে এ ধরনের প্রতিফলনকে আলোর নিয়মিত প্রতিফলন বলে। উদাহরণ হিসেবে বলা যায়— যদি একগৃছে সমান্তরাল আলোকরশ্মি কোনো সমতল দর্পণে বা খুব তালোভাবে পালিশ করা কোনো ধাতব পৃষ্ঠে আপতিত হয়, তবে প্রতিফলনের পরেও রশ্মিগৃছে সমান্তরাল থাকে। এ ক্ষেত্রে রশ্মিগৃছের প্রত্যেকটি আলোকরশ্মির আপতন কোণের মান সমান এবং নিয়মিত প্রতিফলনের ফলে প্রত্যেকটি রশ্মির প্রতিফলন কোণেরও মান সমান হয় [চিত্র: ৮.৩]।

চিত্র ৮.৩: নিয়মিত প্রতিফলন

চিত্র ৮.৪ : ব্যাশ্ত প্রতিফলন

১২৮

২. ব্যাপ্ত প্রতিফলন

যদি একগুচ্ছ সমান্তরাল আলোকরশ্মি কোনো তলে আপতিত হয়ে প্রতিফলনের পর আর সমান্তরাল না থাকে বা অভিসারী বা অপসারী রশ্মিগুচ্ছে পরিণত না হয় তবে এ ধরনের প্রতিফলনকে আলোর ব্যাপ্ত বা অনিয়মিত প্রতিফলন বলে।

৮.৪ চিত্রে দেখা যাচ্ছে যে, একগুচ্ছ সমান্তরাল আলোকরশ্মি একটি অমসৃণ তলে আপতিত হচ্ছে। এক্ষেত্রে রশ্মিগুলো অমসৃণ তলের বিভিন্ন আপতন কিদুতে বিভিন্ন আপতন কোণে আপতিত হয়, ফলে এসকল রশ্মির আনুষজ্ঞিক প্রতিফলন কোণগুলোও বিভিন্ন হয়। যার ফলে প্রতিফলিত রশ্মিগুলো আর সমান্তরাল থাকে না। আমাদের চারপাশে যে সকল বস্তু দেখতে পাই, তাদের অধিকাংশের পৃষ্ঠ মসৃণ নয়। ফলগুতিতে আমাদের চোখে যে সকল প্রতিফলিত রশ্মি প্রবেশ করে তারা ব্যাশ্ত প্রকৃতির। যার ফলে কম্তুগুলো আমাদের নিকট উচ্জ্বল না হয়ে অনুজ্বল দেখায়। খালি চোখে দেখা অধিকাংশ পৃষ্ঠ আপাতদ্য্তিতে মসৃণ মনে হলেও প্রকৃতপক্ষে এ সকল পৃষ্ঠ মসৃণ নয়। যখন অনুবীক্ষণ যন্ত্রে দারা এ সকল পৃষ্ঠ দেখা হয় তখন তা বোঝা যায়।

৮.৩ দৰ্পণ

Mirror

দর্পণ হলো এমন একটি মসৃণ তল যেখানে আলোর নিয়মিত প্রতিফলন ঘটে। দর্পণে আলোর প্রতিফলনের ফলে দর্পণের সামনে স্থাপিত বস্তুর একটি স্পস্ট প্রতিবিম্ব গঠিত হয়।

একটি মসৃণ তলে প্রতিফলক আস্তরণ দিয়ে দর্পণ প্রস্তুত করা হয়। সাধারণত কাচের এক পৃষ্ঠে ধাতুর প্রলেপ লাগিয়ে দর্পণ তৈরি করা হয়। কাচের উপর পারদ বা রুপার প্রলেপ লাগানোর এই প্রক্রিয়াকে 'পারা লাগানো' বা সিলভারিং বলা হয়। ধাতুর প্রলেপ লাগানো পৃষ্ঠের বিপরীত পৃষ্ঠটি প্রতিফলক পৃষ্ঠ হিসেবে কাজ করে। এছাড়াও স্থির পানি পৃষ্ঠ, মসৃণ বরফ ইত্যাদিও দর্পণের ন্যায় কাজ করে থাকে।

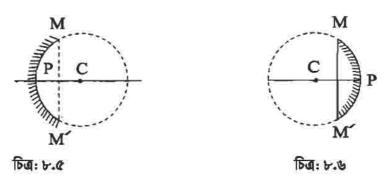
দর্পণ প্রধানত দুই প্রকার। যথা–

- ১. সমতল দৰ্পণ
- ২. গোলীয় দৰ্পণ

সমতল দৰ্পণ

প্রতিফলক পৃষ্ঠটি যদি মসৃণ ও সমতল হয় এবং তাতে আলোর নিয়মিত প্রতিফলন ঘটে তবে সে পৃষ্ঠকে সমতল দর্পণ বলে। আমরা সচরাচর যে দর্পণ বা আয়না ব্যবহার করে থাকি। সেটি হলো সমতল দর্পণ।

গোলীয় দৰ্পণ


প্রতিফলক পৃষ্ঠটি যদি মসৃণ এবং গোলীয় হয় অর্থাৎ প্রতিফলক পৃষ্ঠটি যদি কোনো গোলকের অংশবিশেষ হয় এবং তাতে আলোর নিয়মিত প্রতিফলন ঘটে তবে তাকে গোলীয় দর্পণ বলে। ৮.৫ ও ৮.৬ চিত্রে গোলকীয় দর্পণ দেখানো হয়েছে। একটি কাচের ফাঁপা গোলকের খানিকটা অংশ কেটে নিয়ে যদি তার এক পৃষ্ঠে পারা লাগানো হয়, তবে গোলীয় দর্পণ তৈরি হয়। গোলীয় দর্পণ আবার দুই প্রকার। যথা—

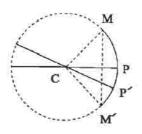
১. অবতল দৰ্পণ

২. উত্তল দৰ্পণ

অবতল দর্পণ:কোনো গোলকের অবতল পৃষ্ঠ যদি প্রতিফলকরূপে কাজ করে অর্থাৎ আলোর নিয়মিত প্রতিফলন যদি গোলীয় দর্পণের অবতল পৃষ্ঠ হতে সংঘটিত হয় তবে সে দর্পণকে অবতল দর্পণ বলে। এক্ষেত্রে গোলকের কেটে নেয়া অংশের উত্তল পৃষ্ঠে পারা লাগিয়ে অবতল দর্পণ তৈরি করা হয় [চিত্র: ৮.৫]। অবতল দর্পণ একটি অভিসারী দর্পণ কেননা

সমান্তরাল আলোকরশ্মি অবতল দর্পণে আপতিত হওয়ার পর প্রতিফলিত হয়ে একটি বিন্দুতে অভিসারিত হয় বা একত্রে মিলিত হয়।

উদ্ভব্দ দর্শণ: কোনো গোলকের উত্তল পৃষ্ঠ যদি প্রতিফলকর্পে কাজ করে অর্থাৎ আলোর নিয়মিত প্রতিফলন যদি গোলীয় দর্পণের উত্তল পৃষ্ঠ হতে সংঘটিত হয়, তবে সে দর্পণকে উত্তল দর্পণ বলে। এক্ষেত্রে গোলকের কেটে নেওয়া অংশের অবতল পৃষ্ঠে অর্থাৎ ভিতরের দিকে পারা লাগিয়ে উত্তল দর্পণ তৈরি করা হয় [চিত্র: ৮.৬]।

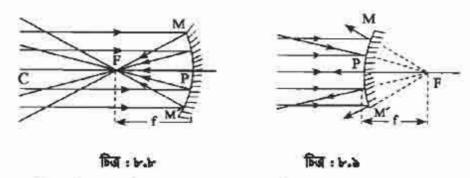

উত্তল দর্পণ একটি অপসারী দর্পণ, কারণ সমাস্তরাল আলোকরশ্মি উত্তল দর্পণে আপতিত হয়ে প্রতিফলিত হ্বার পর অপসারী রশ্মিগুচ্ছে পরিণত হয় অর্থাৎ ছড়িয়ে পড়ে এবং কখনই একটি বিন্দুতে মিলিত হয় না।

গোলীর দর্শণ সংক্রান্ড করেকটি সংজ্ঞা

মেরু (Pole) : গোলীয় দর্গণের প্রতিফলক পৃষ্ঠের মধ্যবিন্দুকে দর্পণের মেরু বলে। ৮.৭ চিত্রে P দর্পণের মেরু। অবতল দর্পণের ক্ষেত্রে প্রতিফলক পৃষ্ঠের সবচেয়ে নিচু বিন্দুই দর্পণের মের।

বক্ততার কেন্দ্র : গোলীয় দর্পণ যে গোলকের অংশবিশেষ, সেই গোলকের কেন্দ্রকে ঐ দর্পণের বক্ততার কেন্দ্র বলে। ৮.৭ চিত্রে C কিন্দু দর্পণের বক্ততার কেন্দ্র।

বক্ততার ব্যাসার্থ : গোলীয় দর্পণ যে গোলকের অংশ, সেই গোলকের ব্যাসার্থকে ঐ দর্গণের বক্ততার ব্যাসার্থ বলে। ৮.৭ চিত্রে PC বা MC হলো গোলীয় দর্পণের বক্ততার ব্যাসার্থ। বক্ততার ব্যাসার্থকে r ছারা প্রকাশ করা হয়।

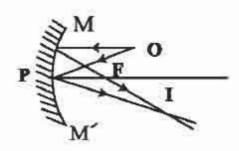


हिन्दा : ४.१

প্রধান অক : গোলীয় দর্পণের মেরু ও বক্রতার কেন্দ্রের মধ্য দিয়ে অতিক্রমকারী সরলরেখাকে দর্পণের প্রধান অক্ষ বলে। ৮.৭ চিত্রে PC সরলরেখা হলো দর্পণের প্রধান অক্ষ।

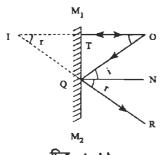
গৌণ অক্ষ: মের্ কিদু ব্যতিত দর্পণের প্রতিফলক পৃষ্ঠের উপরস্থ যেকোনো কিদু ও বক্রতার কেন্দ্রের মধ্য দিয়ে অতিক্রমকারী সরলরেখাকে গৌণ অক্ষ বলে। ৮.৭ চিত্রে P'C সরলরেখা দর্পণের গৌণ অক্ষ।

প্রধান ফোকাস: প্রধান অক্ষের নিকটবর্তী ও সমাশ্তরাল রশ্মিগুচ্ছ কোনো গালীয় দর্গণে আপতিত হয়ে প্রতিফলনের পর প্রধান অক্ষের উপর যে কিদুতে মিলিত হয় (অবতল দর্গণে) বা যে কিদু থেকে অপসূত হচ্ছে বলে মনে হয় (উত্তল দৰ্শগে) ভাকে ঐ দৰ্শগের প্রধান কোকাস বলে। ৮.৮ ৩ ৮.৯ চিত্রে F কিন্দু হলো বধাক্রমে অবতল ও উক্তল দর্শগের প্রধান কোকাস।


কোকাস দূরজ্ব : পোলীর দর্শণের মেরু কিন্দু থেকে প্রধান কোকাস পর্বশন্ত দূরজ্বকে কোকাস দূরজ্ব বলে। একে f বারা প্রধান করা বর । ৮-৮ ও ৮-৯ চিত্রে PP বলো কোকাস দূরজ্ব । পোলীর দর্শণের ফোকাস দূরজ্ব বরুভার ব্যাসার্থের ভর্মেক, কর্বাৎ $f=\frac{r}{2}$ ।

কোকাস ডল : গোলীয় দৰ্গণের প্রধান কোকাসের মধ্য দিরে প্রধান অক্ষের সাথে লম্ম্বভাবে যে সমতল করনা করা হয়। ভাকে কোকাস তল যদে।

৮.৪ প্রতিবিম্ব


Image

ভূমি যথন কোনো আয়নার দিকে ভাকাও, ভখন ভূমি নিজেকে নেখতে গাও। এটাই ভোমার প্রভিবিম্প। শুধু আয়না কেন, ভূমি যথন কোনো পুৰুৱ বা নদীর পাড় দিয়ে হেঁটে যাও ভখনও গানির মধ্যে ভোমার প্রতিবিদ্দ দেখতে গাবে।

किया : ४.३०

চিত্র : ৮.১০-এ অবভণ দর্শদের সমূপে O একটি বিশ্ব শক্ষক্ত । O হতে প্রধান অক্টের সমান্তরাল রশ্মি OM নর্গদে আগভিত হরে প্রধান কোকাস দিয়ে MFI গণে প্রভিক্ষিত হয় । OP রশ্মি দর্গণের মের্কিন্ P তে আগভিত হয়ে প্রভিক্ষনের গর PI গণে যার । প্রভিক্ষনিত রশ্মি দৃটি I কিনুতে ছেদ করে । এই I কিনুত্ব হলো O কিনুত্র প্রভিবিশ্ব ।

চিত্ৰ : ৮.১১

চিত্র ৮.১১–এ O সমতল দর্পণের সামনে অবস্থিত একটি বিন্দু লক্ষবস্তু। O হতে OT রশ্মি অভিলম্বভাবে দর্পণে আপতিত হয় এবং TO পথে প্রতিফলিত হয়। OQ রশ্মি তীর্যকভাবে দর্পণে আপতিত হয় এবং QR পথে প্রতিফলিত হয়। এ রশ্মি দুইটি অপসারী হওয়ায় রশ্মিগুলোকে পিছনের দিকে বর্ধিত করলে এগুলো I বিন্দুতে মিলিত হয়। অর্থাৎ প্রতিফলিত রশ্মিগুলো দর্পণের পিছনে I বিন্দু থেকে অপসারিত হচ্ছে বলে মনে হয়। এই I বিন্দুই হলো O বিন্দুর প্রতিবিন্দ।

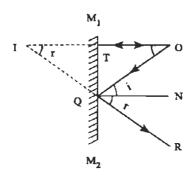
কোনো বিন্দু হতে নির্গত আলোকরশ্মিগৃচ্ছ কোনো তলে প্রতিফলিত বা প্রতিসরিত হবার পর বিতীয় কোনো বিন্দুতে মিলিত হয় বা বিতীয় কোনো বিন্দু হতে অপসারিত হচ্ছে বলে মনে হয়, তখন ঐ বিতীয় বিন্দুটিকে প্রথম বিন্দুর প্রতিবিন্দ্ব বলে। একটি বস্তু হলো অসংখ্য বিন্দুর সমষ্টি। ফলে বিন্দুর ন্যায় বস্তুরও প্রতিবিন্দ্ব গঠিত হয়।

প্রতিবিস্বের প্রকারভেদ

তুমি যখন জায়নায় তোমার চেহারা দেখ, তখন জায়নার পিছনে তোমার প্রতিবিন্দ দেখতে পাও। জালোর প্রতিফলনের জন্য এমনটি ঘটে। জায়নায় দেখা তোমার এরূপ প্রতিবিন্দে সত্যিকার জর্মে জালো মিলিত হয় না। এ ধরনের প্রতিবিন্দকে বলে অবাস্তব প্রতিবিন্দ। জার যে সকল প্রতিবিন্দে আলো সত্যিকার জর্মে মিলিত হয় (যেমন— সিনেমার পর্দায় ফেলা কোনো দৃশ্য) সেগুলোকে বলা হয় বাস্তব প্রতিবিন্দ। ডিজিটাল ক্যামেরার পর্দায় ভেসে উঠা ছবি হলো বাস্তব প্রতিবিন্দ্র। বাস্তব প্রতিবিন্দ্র গর্দায় ফেলা যায় কিন্তু জবাস্তব প্রতিবিন্দ্র পর্দায় ফেলা যায় না। প্রতিবিন্দ্র দুই প্রকারের হয়—

- (ক) বাস্তব প্রতিবিম্ব
- (খ) অবাস্তব প্রতিবিম্ব
- (ক) বাস্তব প্রতিবিম্প: কোনো বিন্দু হতে নিঃসৃত আলোক রিশাগুচ্ছ কোনো তলে প্রতিফলিত বা প্রতিসরিত হবার পর যদি দিতীয় কোনো বিন্দুতে প্রকৃতপক্ষে মিলিত হয় তাহলে ঐ দিতীয় বিন্দুটিকে প্রথম বিন্দুর বাস্তব প্রতিবিন্দ বলে। চিত্র: ৮.১০ এ I হলো প্রতিফলনের জন্য বাস্তব প্রতিবিন্দ।
- (খ) **অবাস্তব প্রতিবিন্দ:** কোনো বিন্দু হতে নিঃসৃত আলোক রশ্মিগুছে কোনো তলে প্রতিফলিত বা প্রতিসরিত হবার পর যদি দিতীয় কোনো বিন্দু থেকে অপসারিত হচ্ছে বলে মনে হয়, তবে ঐ দিতীয় বিন্দুটিকে প্রথম বিন্দুর অবাস্তব প্রতিবিন্দ্র বলে। চিত্র: ৮.১১ এ I হলো প্রতিফলনের জন্য সৃষ্ট অবাস্তব প্রতিবিন্দ্র।

৮.৫ দর্পণে ক্যতুর প্রতিবিম্ব


Image in a mirror

আমরা জানি দর্পণ দুই প্রকার। (ক) সমতল দর্পণ এবং (খ) গোলীয় দর্পণ। সমতল এবং গোলীয় দর্পণে কীভাবে প্রতিবিস্ব সৃষ্টি হয় তা আমরা আলোচনা করব।

সমতল দৰ্গণে সৃষ্ট প্ৰতিবিন্দ

(ক) কিন্দু লক্ষকভূ

চিত্র ৮.১২ এ M_1M_2 সমতল দর্গণের সামনে O একটি বিন্দু লক্ষবস্তু। O থেকে OT রশ্মি অভিলম্বভাবে দর্গণে আপতিত হয় এবং TO পথে ফিরে আসে। OQ রশ্মি দর্পণে তীর্যকভাবে আপতিত হয় এবং QR পথে প্রতিফলিত হয়। প্রতিফলিত রশ্মি QR এবং TO পিছনে বর্ধিত করলে এরা I বিন্দুতে মিলিত হয়। অর্ধাৎ প্রতিফলিত রশ্মি দুইটি যেন দর্গণের পিছনে অবস্থিত I বিন্দু থেকে আসছে। অতএব, এই I বিন্দুই হলো O বিন্দুর অবাস্তব প্রতিবিন্দ।

চিত্র:৮.১২

 $oldsymbol{Q}$ কিন্দুতে $oldsymbol{Q} N$ অভিলম্ব আঁকা হলো।

চিত্রে TO এবং QN সমান্তরাল। OQ ছেদক।

$$\therefore \angle TOQ = \angle OQN = i \tag{8.1}$$

আবার, OI এবং QN সমান্তরাল, RQI সরলরেখা এদের ছেদক।

$$\therefore \angle TIQ = \angle NQR = r \tag{8.2}$$

আমরা জানি, i = r

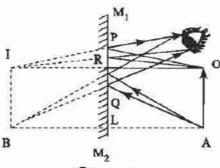
∴ (8.1) ও (8.2) সমীকরণ হতে পাই,

 $\angle TOQ = \angle TIQ$

এখন, ΔQOT এবং ΔQIT এর মধ্যে,

 $\angle TOQ = \angle TIQ$, TQ সাধারণ বাহু,

এবং ∠*QTO* = ∠*QTI* = 90°


সূতরাং, ত্রিভুঞ্বয় সর্বসম।

সূতরাং, TO = TI

অর্থাৎ, লক্ষবস্তু O দর্পণের যত সামনে অবস্থিত, প্রতিবিন্দ্ব I দর্পণের ঠিক ততটা পিছনে গঠিত হয়।

(খ) বিস্তৃত লক্ষবস্তু

বিন্দু শক্ষবস্তুর ন্যায় বিস্তৃত শক্ষবস্তুর জন্যও প্রতিবিন্দ্র আঁকা যায়। এক্ষেত্রে, বিস্তৃত শক্ষবস্তুকে অসংখ্য বিন্দুর সমষ্টি হিসেবে গণ্য করতে হবে। এক্ষেত্রে, প্রত্যেক বিন্দুর জন্য দর্পণের পিছনে অবাস্তব প্রতিবিন্দ্র গঠিত হয় [চিত্র: ৮.১৩]।

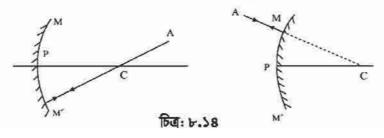
চিত্র: ৮.১৩

চিত্রে AO শক্ষবস্তু এবং এর প্রতিবিন্দ্র BI দেখানো হয়েছে। O এবং A হতে M_1M_2 দর্পণের উপর শব্দ টানা হলো। এরা দর্পণকে যথাক্রমে R এবং L বিন্দৃতে ছেদ করে। এখন OR এবং AL কে পিছনের দিকে যথাক্রমে I এবং B পর্যন্ত বর্ধিত করা হলো বেন OR = IR এবং AL = BL হয়।

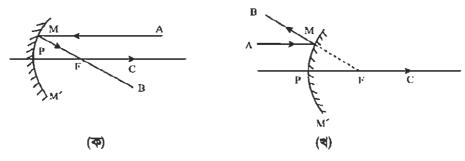
O এবং A হতে দুইটি করে রশ্মি তীর্যকভাবে দর্পণে আপতিত হয়ে প্রতিফলিত হয়। প্রতিফলিত রশ্মি দুইটিকে পেছনের দিকে বর্ষিত করলে এগুলো যথাক্রমে $I \circ B$ বিন্দু থেকে আসছে বলে মনে হয়। $I \circ B$ যোগ করা হলো। তাহলে BI ই হলো সমতল দর্পণে গঠিত AO লক্ষবস্তুর অবাস্তব প্রতিবিন্দ্র।

সমতল দর্গণে সৃষ্ট প্রতিবিম্বের আকার লক্ষবস্তুর আকারের সমান হয়।

সমতল দর্গণে গঠিত প্রতিবিম্বের বৈশিক্ট্য

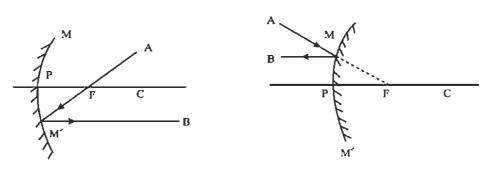

সমতল দর্পণে সৃষ্ট প্রতিবিম্পের নিমুলিখিত ধর্মগুলো রয়েছে:

- ১. সমতল দর্পণ থেকে বস্তুর দূরত্ব যত, দর্পণ থেকে প্রতিবিস্পের দূরত্বও তত।
- ২. প্রতিবিম্পের আকার দক্ষবস্তুর আকারের সমান।
- প্রতিবিম্ব অবাস্তব এবং সোজা।


গোণীয় দৰ্গণে সৃষ্ট প্ৰতিবিশ্ব

গোলীয় দর্পণ তা অবতল হোক কিবো উন্তল হোক, এদের সামনে কোনো কচ্ছু রাখলে দর্পণে তার প্রতিবিন্দ্র সৃষ্টি হয়। এই প্রতিবিন্দের অবস্থান, আকৃতি ও প্রকৃতি জানতে হলে, বস্তু থেকে নিঃসৃত আলোক রশ্মিগৃছে প্রতিষ্ণনের পর কোনো দিকে প্রতিষ্ণলিত হবে তা জানা দরকার। নিমুবর্ণিত তিনটি রশ্মির যেকোনো দুইটি ব্যবহার করে আমরা গোলীয় দর্শণে প্রতিবিন্দ্র আঁকতে পারি।

১. গোলীয় দর্পণের বক্রতার ব্যাসার্ধ বরাবর জাপতিত রশ্মি প্রতিফলনের পর পুনরায় সেই পঝেই ফিরে আসে [চিত্র: ৮.১৪]।



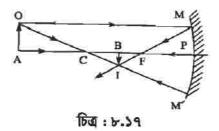
২. অবতদ দর্পণের প্রধান অক্ষের সমাস্তরাদে আপতিত রশ্মি প্রতিফলনের পর প্রধান ফোকাস দিয়ে যায়; [চিত্র: ৮.১৫ক] উত্তদ দর্পণের প্রধান অক্ষের সমাস্তরাদে আপতিত রশ্মি প্রতিফলনের পর প্রধান ফোকাস হতে আসছে বলে মনে হয় [চিত্র: ৮.১৫ খ]।

চিত্র: ৮.১৫

৩. অবতর্গ দর্পণের প্রধান ফোকাসের মধ্য দিয়ে আপতিত রশ্মি প্রধান অক্ষের সমান্তরারে প্রতিফলিত হয়; উত্তর্গ দর্পণের প্রধান ফোকাস অভিমূখে আপতিত রশ্মি প্রতিফলনের পর প্রধান অক্ষের সমান্তরাল হয়। [চিত্র: ৮.১৬]।

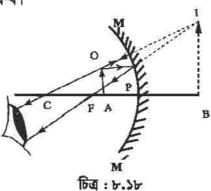
চিত্র : ৮.১৬

অবতদ দর্গণে প্রতিবিদ্দ: গোলীয় দর্পণে গঠিত প্রতিবিদ্দের অবস্থান, আকৃতি ও প্রকৃতি দর্পণের সামনে অবস্থিত দক্ষবস্তুর অবস্থানের উপর নির্ভর করে। দক্ষবস্তুর অবস্থানের পরিবর্তন হলে প্রতিবিদ্দের অবস্থান, আকৃতি ও প্রকৃতিরও পরিবর্তন ঘটে।


লক্ষবস্তৃকে অসীম এবং প্রধান ফোকাসের মধ্যে দর্পণের সামনে যেখানেই রাখা হোক না কেন সৃষ্ট প্রতবিন্দ সর্বদা বাস্তব ও উন্টো হবে। আবার লক্ষবস্তৃকে প্রধান ফোকাস ও মেরুর মধ্যে স্থাপন করা হলে গঠিত প্রতিবিন্দ হবে অবাস্তব এবং সোজা। নিম্নে অবতল দর্পণে সৃষ্ট বাস্তব এবং অবাস্তব প্রতিবিন্দ বর্ণনা করা হলো:

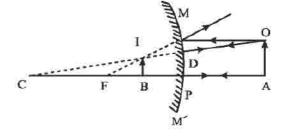
বাস্তব প্রতিবিদ্ধ

ধরা যাক MPM' একটি অবতদ দর্পণ। P হলো এর মেরু এবং F প্রধান ফোকাস এবং C বক্রতার কেন্দ্র। দর্পণের সামনে প্রধান অক্টের উপর দম্বভাবে অবস্থিত দক্ষবস্তু AO।


O বিন্দু থেকে একটি রশ্মি OM প্রধান অক্ষের সমান্তরালে দর্পণের M বিন্দুতে আপতিত হয়ে প্রধান ফোকাসের মধ্য দিয়ে MI পথে প্রতিফলিত হয়। O হতে অপর একটি রশ্মি OCM' বক্রতার কেন্দ্র C বরাবর দর্পণে আপতিত হয়ে প্রতিফলনের পর সেটি একই পথে ফিরে যায়। প্রতিফলনের পর রশ্মি দুইটিI বিন্দুতে প্রকৃতপক্ষে মিলিত হয়। সূতরাং I হলো O বিন্দুর বাস্তব প্রতিবিন্দ্র। A থেকে প্রধান অক্ষ বরাবর আপতিত রশ্মি ঐ পথেই ফিরে যায়। ফলে A এর

প্রতিবিম্প ঐ রেখার উপরই হবে। I থেকে প্রধান অক্ষের উপর IB লম্প অঞ্চন করি। BI ই হলো লক্ষকস্থ OA এর বাস্তব প্রতিবিম্প [চিত্র: ৮.১৭]।

প্রতিবিস্বের প্রকৃতি হলো বাস্তব ও উল্টো।


জবাস্তব প্রতিবিন্দ: চিত্র: ৮.১৮ এ লক্ষবস্তু প্রধান ফোকাস এবং মেরুর মধ্যে জবস্থিত। O বিন্দু থেকে একটি রশ্যি প্রধান অক্ষের সমান্তরালে জাপতিত হয়ে প্রধান ফোকাসের মধ্য দিয়ে প্রতিফলিত হয় এবং অপর একটি রশ্যি বক্রতার ব্যাসার্থ বরাবর দর্পণে আপতিত হয়ে প্রতিফলনের পর সেটি একই পথে ফিরে যায়। প্রতিফলনের ফলে রশ্যি দুইটি পরস্পর অপসারী রশ্যিতে পরিণত হয়। রশ্যি দুইটিকে পিছনের দিকে বাড়ালে এরা I বিন্দু থেকে আসছে বলে মনে হয়। অর্থাৎ, I বিন্দুই হলো O বিন্দুর অবাস্তব প্রতিবিন্দ। I বিন্দু থেকে প্রধান অক্ষের উপর IB লন্দ্ব টানা হলো। সূতরাং BI হলো বস্তুর অবাস্তব ও সোজা প্রতিবিন্দ্ব।

সৃষ্ট প্রতিবিম্বের অবস্থান হলো দর্পণের পিছনে, প্রকৃতি অবাস্তব, সোজা এবং আকারে বিবর্ধিত অর্থাৎ কস্ত্র চেয়ে আকারে বড়।

(খ) উদ্ভেশ দর্শণে প্রতিবিক্ষঃ আমরা জানি, অবতল দর্গণে শক্ষবস্ভূর অবস্থানের উপর নির্ভর করে বাস্তব অথবা অবাস্তব প্রতিবিম্ব গঠিত হয়। কিম্তু উদ্ভল দর্গণ সর্বদা বস্তুর অবাস্তব প্রতিবিম্ব গঠন করে। এই প্রতিবিম্ব সবসময় সোজা

এবং বস্তুর চেয়ে আকারে ছোট হয়। চিত্র: ৮.১৯ এ MPM'একটি উত্তল দর্পণ। C এর বক্ততার কেন্দ্র, F প্রধান কোকাস এবং P দর্পণের মের্। AO লক্ষবস্তু দর্পণের সামনে প্রধান অক্ষের উপর লম্বভাবে অবস্থিত। O বিন্দু থেকে প্রধান অক্ষের সমান্তরাল OM রশ্মি দর্পণে আপতিত হয়। প্রতিফলনের পর রশ্মিটি দর্পণের প্রধান কোকাস F থেকে অপসৃত হচ্ছে বলে মনে হয়। অপর একটি রশ্মি OD দর্পণের বক্রতার কেন্দ্র বরাবর লম্বভাবে আপতিত হয়ে একই পথে প্রতিফলিত হয়। এখন এই অপসারী প্রতিফলিত রশ্মি

हर न : क्रवी

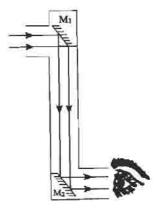
দুইটিকে পিছনের দিকে বাড়িয়ে দিলে এরা I কিদুতে ছেদ করে এবং I কিদু থেকে আসছে বলে মনে হয়। সূতরাং, I

বিন্দুই হলো O বিন্দুর অবাস্তব প্রতিবিন্দ। এখন I বিন্দু থেকে প্রধান অক্ষের উপর IB লন্দ্র অঞ্চন করা হলো। এই BI হলো লক্ষ্বস্তু AO -এর অবাস্তব প্রতিবিন্দ্র। প্রতিবিন্দ্র দর্গণের পিছনে গঠিত হয় এবং তা অবাস্তব, সোজা এবং আকারে লক্ষ্বস্তুর চেয়ে ছোট হয়। লক্ষ্বস্তুকে ক্রমশ দর্পণের নিকটে আনা হলে প্রতিবিন্দ্রও দর্পণের কাছে সরে আসবে এবং প্রতিবিন্দ্রের আকৃতি ক্রমশ বড় হতে থাকবে তবে তা সর্বদাই বস্তুর আকারের চেয়ে ছোট থাকবে।

কোনো নির্দিউ দর্পণের অর্থাৎ নির্দিউ ফোকাস দূরত্ব f এর গোলীয়দর্পণের সামনে u দূরত্বে যদি কোনো লক্ষ্বস্তু থাকে তাহলে যে অবস্থানে প্রতিবিম্ব সৃষ্টি হবে তার দূরত্ব v নিমোক্ত সমীকরণ থেকে গাওয়া যায়,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \mid$$

এ সমীকরণে মান বসানোর ক্ষেত্রে অবতশ দর্শণের জন্য f এর মান ধনাত্মক। উত্তশ দর্শণের জন্য f এর মান ঋণাত্মক এবং u এর মান ধনাত্মক হলে প্রতিবিস্দটি বাস্তব আর ঋণাত্মক হলে প্রতিবিস্দটি অবাস্তব।


৮.৬ সমতৰ ও গোৰীয় দৰ্গণে প্ৰতিবিন্দ্ৰ সৃষ্টির কিছু সাধারণ ঘটনা

১. সরল পেরিস্কোপ: দূরের কোনো জিনিস সোজাসুদ্ধি দেখতে বাধা থাকলে পেরিস্কোপ ব্যবহার করা হয়। একটি সরল পেরিস্কোপ দুইটি সমতল দর্পণ দারা গঠিত। আলার ক্রমিক প্রতিফলন ব্যবহার করে এ যদত্র তৈরি করা হয়। ৮.২০ চিত্রে একটি সরল পেরিস্কোপ দেখানো হয়েছে। একটি লম্বা আয়তাকার কাঠ বা ধাতব নলের মধ্যে দুইটি

সমতল দর্গণকে পরস্পরের সমান্তরাল এবং নলের অক্ষের সাথে 45° কোণ করে রাখা হয়। দূরের বস্তু থেকে সমান্তরাল আলোকরশ্যি প্রথমে M_1 দর্পণে অভিলন্দের সাথে 45° কোণে আপতিত হয়। আপতিত রশ্যি M_1 দর্পণ ঘারা 45° কোণে প্রতিফলিত হয়ে নলের অক্ষ বরাবর এসে M_2 দর্পণে আপতিত হয়। আলোক রশ্যি M_2 দর্পণে পুনরায় প্রতিফলিত হয়ে অনুভূমিকতাবে চোখে পড়ে কলে বস্তুটি দেখা যায়।

সমতল দর্পণ ব্যবহার করে এভাবে আলোক রশ্মির দিক পরিবর্তন করে যা আমরা সরাসরি দেখতে পাই না এমন কম্ভুকেও দেখতে পাই।

ভীড়ের মধ্যে খেলা দেখা, উঁচু দেয়ালের উপর দিয়ে দেখা, শত্ত্ সৈন্যের গতিবিধি পর্যবেক্ষণ ইত্যাদি কাজে পেরিস্কোপ ব্যবহার করা হয়। ডুবোজাহাজে প্রিক্তম ব্যবহার করে আরো উন্নত ধরনের পেরিস্কোপ ব্যবহার করা হয়।

চিত্র : ৮.২০

- ২. সেবৃনে সমতব দর্শণ: সেবৃনে বা পার্লারে চুব কাটানোর সময় আমরা সামনে ও পেছনে সমতব দর্শণ দেখতে পাই। সামনের দর্পণে আমরা মাধার সম্মুখভাগ দেখতে পাই। মাধার পেছনে অবস্থিত দর্পণে মাধার পেছনের অংশের প্রতিবিস্ব গঠিত হয়। এই প্রতিবিস্ব সামনের দর্পণের জন্য অবাস্তব বস্তৃ হিসেবে কাজ করে এবং সামনের দর্পণে পুনরায় প্রতিবিস্ব গঠন করে। ফলে সামনে অবস্থিত দর্শণে আমরা মাধার পানাদভাগও দেখতে পাই।
- ৩. চিকিৎসা ক্ষেত্রে অবতদ দর্শণ: দাঁতের চিকিৎসকরা দাঁত পরীক্ষা করার কাজে অবতদ দর্শণ ব্যবহার করেন। দাঁত পরীক্ষা করার সময় দর্শণটিকে দাঁতের বেশ নিকটে ধরা হয়। ফলে দর্শণে দাঁতের একটি অবাস্তব ও বিবর্ধিত প্রতিবিন্দ গঠিত হয়। এ ছাড়া নাক–কান–গলা বিভাগের চিকিৎসকরাও বিভিন্ন প্রয়োজনে অবতদ দর্শণ ব্যবহার করে থাকেন।

৮.৭ দর্পণের ব্যবহার

Uses of mirrors

বিভিন্ন ধরনের দর্পণ আমরা বিভিন্ন কাচ্চে ব্যবহার করে থাকি। এগুলো নিম্নে বর্ণনা করা হলো:

সমতল দৰ্পণ

- সমতল দর্পণের সাহায্যে আমরা আমাদের চেহারা দেখি।
- ২. চোখের ডাক্তারগণ রোগীর দৃষ্টি শক্তি পরীক্ষা করার জন্য বর্ণমালা পাঠের সুবিধার্থে সমতল দর্পণ ব্যবহার করে থাকেন।
- সমতল দর্পণ ব্যবহার করে পেরিস্কোপ তৈরি করা হয়।
- ৪. পাহাড়ি রাস্তার বাঁকে দুর্ঘটনা এড়াতে এটি ব্যবহার করা হয়।
- ৫. বিভিন্ন আলোকীয় যশ্ত্রপাতি যেমন
 টেলিস্কোপ,ওভারহেড প্রজেক্টর, লেজার তৈরি করতে সমতল দর্পণ ব্যবহার
 করা হয়।
- ৬. নাটক, চলচ্চিত্র ইত্যাদির সুটিং এর সময় সমতল দর্পণ দিয়ে আলো প্রতিফলিত করে কোনো স্থানের ঔচ্জ্ব্ল্য বৃদ্ধি করা হয়।

অবতল দৰ্পণ

- ১. সুবিধাজনক আকৃতির অবতল দর্পণ ব্যবহার করে মুখমণ্ডলের বিবর্ধিত এবং সোজা প্রতিবিন্দ তৈরি করা হয়, এতে রূপচর্চা ও দাঁড়ি কাঁটার সুবিধা হয়।
- ২. দন্ত চিকিৎসকগণ অবতল দর্পণ ব্যবহার করেন।
- ৩. প্রতিফলক হিসেবে অবতল দর্পণ ব্যবহার করা হয়। যেমন— টর্চলাইট, স্টিমার বা লঞ্চের সার্চলাইটে অবতল দর্পণ ব্যবহার করে গতিপথ নির্ধারণ করা হয়।
- ৪. অবতল দর্পণের সাহায্যে আলোকশক্তি, তাপশক্তি ইত্যাদি কেন্দ্রীভূত করে কোনো বস্তুকে উত্তপ্ত করতে ব্যবহার করা হয়। এছাড়াও এটি রাডার এবং টিভি সংকেত সংগ্রহে ব্যবহৃত হয়। যেমন– ডিশ এন্টেনা, সৌরচুল্লী, টেলিস্কোপ এবং রাডার সংগ্রাহক ইত্যাদি।
- ৫. অবতল দর্পণের সাহায্যে আলোক রশ্মিগুচ্ছকে একটি বিন্দুতে কেন্দ্রীভূত করা যায় বলে ডাক্তাররা চোখ, নাক, কান ও গলা পরীক্ষা করার সময় এ দর্পণ ব্যবহার করেন।

উদ্ভল দৰ্পণ

- ১. উত্তব দর্পণ সর্বদা অবাস্তব, সোজা এবং খর্বিত প্রতিবিম্ব গঠন করে বিধায় পেছনের যানবাহন বা পথচারী দেখার জন্য গাড়িতে এবং বিয়ের সময় ভিউ মিরর হিসেবে এ দর্পণ ব্যবহার করা হয়।
- ২. উত্তল দর্পণের সাহায্যে বিস্তৃত এলাকা দেখতে পারা যায় বলে দোকান বা শপিংমলে নিরাপন্তার কাচ্চে উত্তল দর্পণ ব্যবহার করা হয়।
- প্রতিফলক টেলিস্কোপ তৈরিতে এ দর্পণ ব্যবহৃত হয়।
- ৪. এ দর্পণ বিস্কৃত এলাকায় আলোকরশ্মি ছড়িয়ে দেয় বলে রাস্তার বাতিতে প্রতিফলকরূপে ব্যবহৃত হয়।

৮.৮ নিরাপদ ড্রাইভিং

Safe driving

নিরাপদে গাড়ি, মোটর সাইকেল ইত্যাদি যানবাহন চালানোর জন্য চালককে অনেক কিছু খেয়াল করতে হয়। প্রথমেই তাকে গাড়ির সকল বাতি জ্বালিয়ে এগুলো ঠিক আছে কিনা তা পরীক্ষা করে নিতে হয়। নিঁখুত এবং নিরাপদ গাড়ি চালাতে হলে চালককে শুধুমাত্র গাড়ির সামনে কী আছে তা দেখলেই চলে না। বরং গাড়ির পিছনে কী আছে এ ব্যাপারেও সজাগ থাকতে হয়। গাড়ির জন্য দর্পণগুলো অত্যন্ত গুরুত্বপূর্ণ এবং অপরিহার্য অজ্ঞা। এজন্য গাড়ি চালককে গাড়িতে উঠার পরপরই দর্পণগুলোকে ঠিকমত উপযোজন করতে হয়।

১৩৮

৮.১ পাহাড়ি রাস্তার অদৃশ্য বাঁক Blind turns on hilly roads

নিরাপদ গাড়িচালনা সকল গাড়িচালকের জন্য অবশ্যই কর্তব্য। এছাড়া খারাপ আবহাওয়া যেমন— বৃষ্টিপাত, কুয়াশার মাঝে গাড়ি চালানো আরও কঠিন কাজ। বিশেষত পাহাড়ি রাস্তায় গাড়ি চালানো অত্যধিক ঝুঁকিপুর্ণ। কেননা পার্বত্য সড়ক ষেমন আকার্বাকা, তেমনি যথেক উঁচ্ নিচ্ছ [চিত্র: ৮.২৯। পাহাড়ি রাস্তায় গাড়িচালনার জন্য অনেক সময় ৯০° কোণে বাঁক নিতে হয়। এই বাঁক নেওয়ার সময় যথেক সাবধানতা অবলন্দন করতে হবে। অদৃশ্য বাঁকে বিপরীত দিক থেকে আসা গাড়ির চালক পরস্পরকে দেখতে পান না, এছাড়া বাঁকের অপর পাশে কী আছে তা আদৌ তারা জানেন না। এ সমস্যা সমাধানের জন্য বিপজ্জনক বাঁকে ৪৫° কোণে বৃহৎ আকৃতির সমতল দর্শণ বসানো হয়। এর ফলে গাড়িচালকাণ বাঁকের আশেগাশে সবকিছু দেখতে পান এবং নিরাপদে গাড়ি চালাতে সক্ষম হন। মনে রাখতে হবে, পাহাড়ি রাস্তায় বাঁকে কখনো জোরে গাড়ি চালানো ঠিক নয়। এছাড়া জরুরি কোনো কাজ না থাকলে রাতের কোায় পাহাড়ি রাস্তায় গাড়ি চালানো উচিত নয়। কেননা আলোক স্বল্পতার জন্য রাতের কোায় দৃষ্টিগ্রাহ্যতা অনেক কমে যায়।

চিত্র : ৮.২১

৮.১০ বিবর্ধন

Magnification

আমরা বখন কোনো দর্শণ বা লেপে সৃষ্ট প্রতিবিম্ব দেখি, তখন সেটি শক্ষবস্তুর তুলনায় বড়, ছোট বা সমান আকারের হতে পারে।

কোনো দর্পণ বা লেন্সে গঠিত প্রতিবিস্ব বস্তুর চেয়ে আকারে কতটুকু বড় বা ছোট বিবর্ধন দারা তা পরিমাপ করা হয়। অন্যভাবে বলা যায় প্রতিবিস্থের দৈর্ঘ্য ও পক্ষবস্তুর দৈর্ঘ্যের অনুপাতকে রৈখিক বিবর্ধন বা সংক্ষেপে বিবর্ধন বলে।

বদি l দৈর্ঘ্যের একটি বস্তুর জন্য কোনো দর্শণ বা লেলে l' দৈর্ঘ্যের একটি প্রতিবিম্প গঠিত হয় তবে ঐ বস্তুর বিবর্ধন হবে l' ও l এর অনুপাতের সমান।

অৰ্থাৎ,
$$m = \frac{l'}{l}$$
 (8.3)

বিবর্ধনকে লক্ষকস্ত্র দূরত্ব ও প্রতিবিস্বের দূরত্বের সাহায্যে নিম্নোক্তভাবে প্রকাশ করা যায়,

$$m = -\frac{v}{u}$$

u এবং v এর যথাষথ চিহ্নসহকারে মান বসালে m যদি ধনাত্মক হয় তাহলে প্রতিবিস্ঘটি সোঞ্চা হবে। আর m ঋণাত্মক হলে প্রতিবিস্ঘ উন্টা হবে।

বিবর্ধন m এর মান থেকে আমরা প্রতিবিন্দ লক্ষকস্তুর তুলনায় কতগুণ বড় বা ছোট তা জানতে পারি।

অনুসন্ধান : ৮.১

অবতল দর্পণ ব্যবহার করে প্রতিবিম্ব সৃষ্টি ও প্রদর্শন

উদ্দেশ্য: ল্যাবরেটরিতে অবতল দর্পণ ব্যবহার এবং বাস্তব প্রতিবিম্ব সৃষ্টি করা।

যুল্ত্রপাতি : একটি অবতল দর্পণ।

কাচ্ছের ধারা :

১. একটি অবতল দৰ্পণ নাও।

২. দর্পণটি নিয়ে তোমার ল্যাবরেটরির দরজা অথবা জানালার নিকট দাঁড়াও।

৩. এবার দর্পণটিকে বাহিরের কোনো দৃশ্য যেমন–গাছপালা, দালান ইত্যাদির দিকে ধরো।

৪. দর্পণটিকে ডানে বামে নড়াচড়া করে তোমার খুব নিকটবর্তী মসৃণ দেয়ালে ঐ দৃশ্যের প্রতিবিম্ব তৈরি কর।

প্রতিবিম্বটিকে স্পয়্ট করার জন্য দর্পণটিকে দেয়াল হতে সামনে বা পিছনে সরাও।

৬. কোনো একটি নির্দিষ্ট দুরত্বে তুমি বস্তুর স্পষ্ট প্রতিবিম্ব দেয়ালে দেখতে পাবে।

এভাবে দূরের ক্সভুর স্পয়্ট প্রতিবিন্দ্ব দেয়ালে প্রদর্শন করা যায়।

৮. প্রতিবিম্বের প্রকৃতি আলোচনা কর।

অনুশীলনী

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উত্তরের পার্শ্বে টিক (\sqrt) চিহ্ন দাও

১. উত্তল দর্পণ কোথায় ব্যবহার হয়?

ক. গাড়িতে

খ. টৰ্চ লাইটে

গ. সৌরচুল্লীতে

ঘ. রাডারে

২. প্রতিফলন কত প্রকার?

ক. ৪

থ. ৩

গ ১

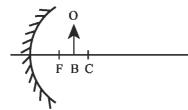
ঘ. ১

৩. সমতল দর্পণে সৃষ্ট প্রতিবিন্দ্-

i. আকারে লক্ষ বস্তুর সমান

ii. পর্দায় গঠন করা যায়

iii. দর্পণ থেকে বস্তুর দূরত্বের সমান দূরত্বে গঠিত হয়।


নিচের কোনটি সঠিক?

ক. i ও ii

খ. ii ও iii

গ. i ও iii

ঘ. i, ii ও iii

চিত্রের আলোকে ৪ ও ৫ নং প্রশ্নের উত্তর দাও।

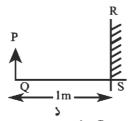
8. BO কম্তুর প্রতিবিম্বের আকৃতি কিরূপ হবে—

ক. বিবর্ধিত

খ, খর্বিত

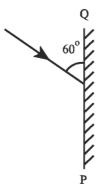
গ. অত্যন্ত বিবর্ধিত

ঘ. অত্যন্ত খৰ্বিত


c. BO বস্তুর প্রতিবিম্বের অবস্থান কোথায় হবে?

- ক. ফোকাস ও মেরুর মাঝে
- গ. বক্রতার কেন্দ্রে

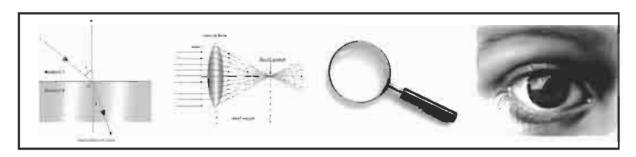
- খ. প্রধান ফোকাসে
- বব্রুতার কেন্দ্র ও অসীমের মাঝে।


খ. সৃজনশীল প্রশ্ন

21

- ক) সমতল দৰ্পণ কী?
- খ) দর্পণের পিছনে ধাতুর প্রলেপ লাগানো হয় কেন?
- গ) চিত্র এঁকে দর্পণ থেকে PQ কম্তুর প্রতিবিম্বের অকস্থান নির্ণয় কর।
- ঘ) প্রতিবিম্প গঠনের ক্ষেত্রে ১এবং ২নম্বর দর্পণের তুলনা কর।

١٤



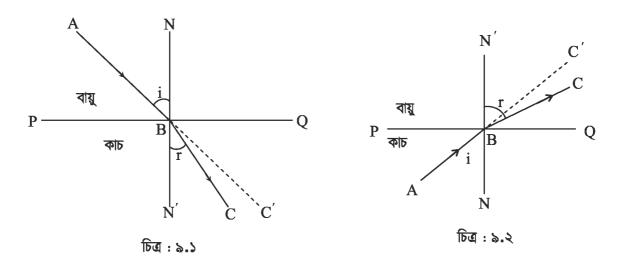
- ক) প্রতিবিম্ব কাকে বলে?
- খ) দর্পণে লম্বভাবে আপতিত রশ্মি একইপথে ফিরে আসে কেন?
- গ) চিত্রের আলোকে প্রতিফলন কোণের মান নির্ণয় কর
- ঘ) PQ দর্পণে গঠিত প্রতিবিম্ব অবাস্তব চিত্রসহ ব্যাখ্যা $\,$ কর ।

গ. সাধারণ প্রশ্ন

- ১। আলোর প্রতিফলন বলতে কী বোঝ ?
- ২। নিয়মিত প্রতিফলন ও ব্যাপ্ত প্রতিফলন বলতে কী বোঝ ?
- ৩। দৰ্পণ কাকে বলে ?
- ৪। প্রতিবিন্দ কাকে বলে? প্রতিবিন্দ কয় প্রকার ও কী কী?
- ৫। অবতল দর্পণে কীভাবে বাস্তব প্রতিবিম্ব সৃষ্টি হয় তা রশ্মি চিত্রের সাহয্যে দেখাও।
- ৬। অবতল দর্পণে কীভাবে অবাস্তব প্রতিবিম্ব সৃষ্টি হয় তা চিত্রসহ বর্ণনা কর।

নব্ম অধ্যান্ন **আলোর প্রতিসরণ** REFRACTION OF LIGHT

্রেকটা লাঠিকে তির্বক্তাবে পানির মধ্যে ছুবালে বাঁকা লেখায়। ছগ তরা স্বচ্ছ পানির দিকে উপর থেকে তাকালে ছপের তলা উপরে উঠেছে বলে মনে হয়। এসব ঘটনা আমরা দৈনন্দিন জীবনে নিচরই লব্ধ করেছি। এ ঘটনাগুলোর মূলে রয়েছে আলোর একটা বিলেষ ধর্ম যা হচ্ছে 'প্রতিসরণ'। প্রতিসরণের একটা বিলেষ ঘটনা হচ্ছে পূর্ণ অভ্যন্তরীণ প্রতিক্লন। পূর্ণ অভ্যন্তরীণ প্রতিক্লনের জন্যই মরুত্মিতে মরীচিকার সৃষ্টি হয়, হীরককে উচ্ছল দেখায়, অপটিক্যাল ফাইবারের সাহায্যে তথ্য সংক্রেত প্রেরণ করা হয়। আমরা অনেকেই দৃষ্টির ত্তি দ্ব করার জন্য চশমা ব্যবহার করে থাকি। এই চশমার কাচ একটা লেল। আমরা এই অধ্যায়ে এসব বিষয় আলোচনা করব।

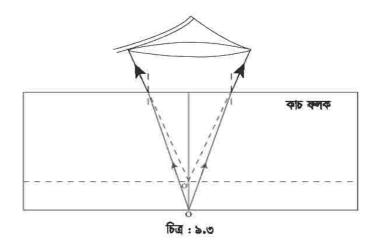

এই অধ্যায় পাঠ শেবে আমরা –

- ১. প্রতিসরণের সূত্র ব্যাখ্যা করতে পারব
- ২. প্রতিসরণাক্ত ব্যাখ্যা করতে পারব
- ৩. পূর্ণ অভ্যন্তরীণ প্রতিফলন ব্যাখ্যা করতে পারব
- প্রপটিক্যাল ফাইবারের ব্যবহার ব্যাখ্যা করতে পারব
- ৫. শেশ এবং এর প্রকারতেদ ব্যাখ্যা করতে পারব
- ৬. আলোকরশ্রির ক্রিয়ারেখা অঞ্চন করে শেশ সঞ্জোল্ড বিভিন্ন রাশি বর্ণনা করতে পারব
- ৭. লেন্সে সৃষ্ট প্রতিবিম্ব আলোক রশ্মির ক্রিয়ারেখা অঞ্চন করে বর্ণনা করতে পারব
- ৮. লেনের ক্ষমতা ব্যাখ্যা করতে পারব
- আলোক রশ্মির ক্রিয়ারেখা অব্দেন করে চোখের ক্রিয়া ব্যাখ্যা করতে পারব
- ১০. স্পর্ট দর্শনের নিকটতম বিন্দু ব্যাখ্যা করতে পারব
- ১১. দৃষ্টির ত্রুটি ব্যাখ্যা করতে পারব
- ১২. আলোক রশ্মির ক্রিয়ারেখা অঞ্চন করে দৃষ্টির ত্রুটি সংশোধনে লেলের ব্যবহার ব্যাখ্যা করতে পারব
- ১৩. রম্ভিন বস্তুর আলোকীয় উপলব্দি ব্যাখ্যা করতে পারব
- ১৪. দৈনন্দিন জীবনে আলোর প্রতিসরণের ব্যবহার ব্যাখ্যা করতে পারব

৯.১ আলোর প্রতিসরণ

Refraction of light

চিত্র ৯.১ লক্ষ কর। এখানে বায়ু এবং কাচ দুইটি মাধ্যম দেখানো হয়েছে। আলোক রিশ্ম বায়ু মাধ্যমে AB পথে এসে মাধ্যমদ্বয়ের বিভেদতল PQ এর B বিন্দুতে তির্যকভাবে আপতিত হলো। সোজা পথে গেলে আলো কাচের মধ্যে BC' পথে যেতো কিন্তু তা না যেয়ে BC পথে বেঁকে গিয়েছে। আলোক রিশ্মির এই বেঁকে যাবার ঘটনাই হচ্ছে প্রতিসরণ। সূতরাং আলোক রিশ্মি এক স্বচ্ছ মাধ্যমের থেকে ভিন্ন স্বচ্ছ মাধ্যমে তির্যকভাবে প্রবেশ করলে দুই মাধ্যমের বিভেদতলে এর দিক পরিবর্তিত হয়। আলোক রিশ্মির এই দিক পরিবর্তনের ঘটনাকে আলোর প্রতিসরণ বলে।

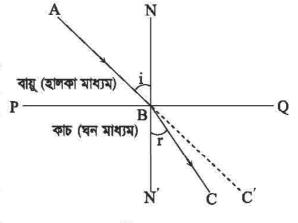


চিত্র ৯.১ এ AB আপতিত রশ্মি, BC প্রতিসৃত রশ্মি এবং $NBN^{'}$, B বিন্দুতে PQ এর উপর অজ্ঞিত অভিলম্ব। $\angle ABN$ কে আপতন কোণ i এবং $\angle N^{'}BC$ কে প্রতিসরণ কোণ r বলে।

বিভিন্ন মাধ্যমে আলোর বেগ বিভিন্ন তাই মাধ্যম পরিবর্তনের সময় আলোর প্রতিসরণ ঘটে। আলোক রশ্মি হালকা মাধ্যম (যেমন বায়ু) থেকে ঘন মাধ্যমে (যেমন কাচে) প্রতিসৃত হলে প্রতিসৃত রশ্মি অভিলম্বের দিকে বেঁকে যায় অর্থাৎ i>r। আবার বিপরীতভাবে ঘন মাধ্যম থেকে আলোক রশ্মি হালকা মাধ্যমে প্রতিসৃত হলে (চিত্র ৯.২) আলোক রশ্মি অভিলম্ব থেকে দূরে বেঁকে যাবে। অর্থাৎ এক্ষেত্রে r>i।

করে দেখ: একটি সাদা কাগজের উপর একটি বিন্দু O নাও এবং তার উপর একটি স্বচ্ছ কাচের ফলক রাখ। কী দেখলে?

O বিন্দু O' বিন্দুতে উঠে এসেছে। আলোর প্রতিসরণের জন্য এরূপ ঘটে। O বিন্দু থেকে আগত আলোক রিশ্ম ঘন মাধ্যম থেকে এসে হালকা মাধ্যমে প্রতিসৃত হয় (চিত্র ৯.৩) ফলে অভিলম্ব থেকে প্রতিসৃত রিশ্মিগুলো দূরে বেঁকে যায়। প্রতিসৃত রিশ্মিগুলোকে পিছনে বর্ধিত করলে O' বিন্দু থেকে আসছে বলে মনে হয়। O' বিন্দু O বিন্দু অবাস্তব প্রতিবিন্দ্র। তাই উপর থেকে দেখলে O বিন্দু O' বিন্দুতে উঠে এসেছে বলে মনে হয়।


আলোর প্রতিসরণের সূত্র

আমরা ইতোমধ্যে চিত্র : ৯.১ (এখানে চিত্র : ৯.৪) এ শক্ষ করেছি AB আপতিত রশাি, BC প্রতিসৃত রশাি এবং NBN' , B বিন্দুতে PQ এর উপর অঞ্চিত অভিনন্দ। $\angle ABN$

কে আপতন কোণ i এবং $\angle NBC$ কে প্রতিসরণ কোণ r বলে।

এখন যদি আপতন কোণ বৃদ্ধি করা হয় তবে প্রতিসরণ কোণও বৃদ্ধি পাবে। কিন্দু প্রতিসরণ কোণ আপতন কোণের সমাণুপাতিক হবে না, অর্থাৎ আপতন কোণ i ছিগুণ করঙ্গে প্রতিসরণ কোণ r ছিগুণ হবে না। দেখা গেছে i_1, i_2, i_3 আপতন কোণের জন্য প্রতিসরণ কোণ যথাক্রমে r_1, r_2, r_3 ইত্যাদি হলে, $\frac{\sin i_1}{\sin r_1} = \frac{\sin i_2}{\sin r_2} = \frac{\sin i_3}{\sin r_3} = \dots = ধ্বক হবে। এই ধ্বকটির মান$

নির্ভর করবে আপতন ও প্রতিসরণ মাধ্যমের প্রকৃতি এবং আপতিত

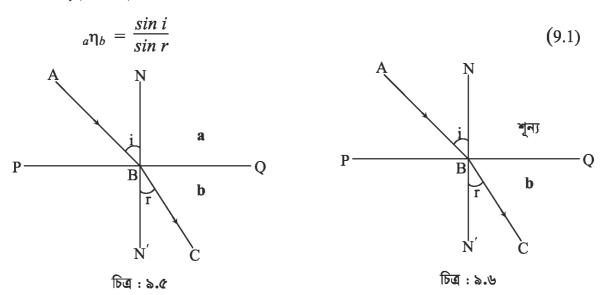
চিত্র : ৯.৪

আলোর বর্ণের উপর। আবার দেখা যাচ্ছে AB, BC এবং জন্তিদম্ব NBN' তিনটি রেখাই তোমার বইয়ের পৃষ্ঠার সমতদে আছে। এর থেকে দেখা যায় আলোর প্রতিসরণ নিম্নোক্ত দুইটি সূত্র মেনে চলে।

প্রথম সূত্র : আপতিত রশ্মি, প্রতিসৃত রশ্মি এবং আপতন বিন্দুতে বিভেদতলের উপর অঞ্চিত অভিশস্ব একই সমতলে অবস্থান করে।

দিতীয় সূত্র: একজোড়া নির্দিন্ট মাধ্যম এবং নির্দিন্ট বর্ণের আলোক রশ্মির ক্ষেত্রে আপতন কোণের সাইন এবং প্রতিসরণ কোণের সাইন—এর অনুপাত সর্বদা ধ্রক।

এই দিতীয় সূত্রকে স্লেলের সূত্রও বলে।


১৪৪

৯.২ প্রতিসরণাজ্ঞ

Refractive index

একজোড়া নির্দিষ্ট মাধ্যম এবং কোনো একটি নির্দিষ্ট বর্ণের আলোকরশ্মি এক মাধ্যম থেকে অপর মাধ্যমে প্রতিসৃত হলে যদি আপতন কোণ i এবং প্রতিসরণ কোণ r হয় তাহলে $\frac{\sin i}{\sin r}$ যে ধ্রুব সংখ্যা হয় তাকে বলা হয় ঐ বর্ণের আলোর জন্য প্রথম মাধ্যমের সাপেক্ষে দ্বিতীয় মাধ্যমের প্রতিসরণাজ্ক। একে η দিয়ে প্রকাশ করা হয়।

আলোকরশ্মি যদি a মাধ্যমে থেকে b মাধ্যমে প্রবেশ করে তবে, a মাধ্যমের সাপেক্ষে b মাধ্যমের আপেক্ষিক প্রতিসরণাচ্চ, (চিত্র ৯.৫)

 η এর নিচে ডানদিকের অক্ষরটি নির্দেশ করে কোন মাধ্যমের প্রতিসরণাঙ্ক এবং বামদিকের অক্ষরটি নির্দেশ করে কোন মাধ্যমের সাপেক্ষে।

আবার শূন্যস্থান থেকে যখন আলোক রিশ্ম কোনো মাধ্যমে প্রবেশ করে তখন মাধ্যমের যে প্রতিসরণাজ্ঞ হয় তাকে ঐ বর্ণের জন্য ঐ মাধ্যমের পরম প্রতিসরণাজ্ঞ বলে (চিত্র ৯.৬)। যদি শূন্যস্থান থেকে b মাধ্যমে আলো প্রতিসৃত হয় তবে, b মাধ্যমের পরম প্রতিসরণাজ্ঞ্ঞ $\eta_b=\frac{\sin i}{\sin r}$ । এক্ষেত্রে η এর বামদিকে কিছু না লিখে কেবল ডানদিকে মাধ্যম লেখা হয়। যেমন b মাধ্যমের পরম প্রতিসরণাজ্ঞ্ঞ η_b ।

আবার আলোকরশ্মি যদি b মাধ্যম থেকে a মাধ্যমে প্রবেশ করে তবে সেক্ষেত্রে আলোকরশ্মির প্রত্যাবর্তনের সূত্রানুসারে (৯.৫ চিত্রে) CB হবে আপতিত রশ্মি, BA প্রতিসৃত রশ্মি,অর্থাৎ আপতন কোণ = r ও প্রতিসরণ কোণ = i এবং b মাধ্যমের সাপেক্ষে a মাধ্যমের আপেক্ষিক প্রতিসরণাজ্ঞ হবে [সমীকরণ ৯.১ অনুসারে]

$${}_{b}\eta_{a} = \frac{\sin r}{\sin i} = \frac{1}{\sin i / \sin r} = \frac{1}{{}_{a}\eta_{b}}$$

$$(9.2)$$

সুতরাং মনে রাখতে হবে

$$_b\eta_a=rac{1}{_a\eta_b}$$
 এবং বিপরীতক্রমে $_a\eta_b=rac{1}{_b\eta_a}$

আবার,

প্রতিসরণাচ্চকে আলোর বেগের সাহায্যেও প্রকাশ করা যায়,

$$a\eta_b = \frac{a}{b}$$
 মাধ্যমে আলোর বেগ এবং

$$o\eta_b = \frac{\gamma_{ell}}{b}$$
 মাধ্যমে আলোর বেগ

যে মাধ্যমের প্রতিসরণাঙ্ক বেশি সেই মাধ্যম বেশি ঘন এবং তাতে আলোর বেগ কম। আর যে মাধ্যমের প্রতিসরণাঙ্ক কম সেই মাধ্যম কম ঘন এবং তাতে আলোর বেগ বেশি।

গাণিতিক উদাহরণ ১.১ : বায়ু থেকে পানিতে প্রতিসরণের ক্ষেত্রে আপতন কোণ 30^0 এবং প্রতিসরণ কোণ 19^0 হলে, বায়ু সাপেক্ষে পানির প্রতিসরণাচ্চ্ক কত ?

আমরা জানি,
$$\frac{\sin i}{\sin r}=\eta$$

$$a\eta_w=\frac{\sin i}{\sin r}=\frac{\sin 30}{\sin 19}=\frac{0.5}{0.325}=1.538$$

উত্তর : নির্ণেয় প্রতিসরণাঙ্ক 1.538

দেওয়া আছে, আপতন কোণ $i=30^0$ প্রতিসরণ কোণ $r=19^0$ বায়ু সাপেক্ষে পানির প্রতিসরণাঙ্ক $_a\eta_w=?$

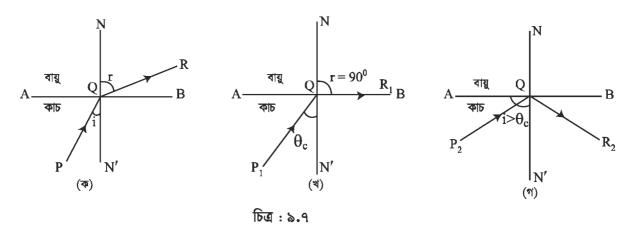
গাণিতিক উদাহরণ ১.২ : বায়ুর সাপেক্ষে পানির প্রতিসরণাজ্ঞ 1.33 হলে পানি সাপেক্ষে বায়ুর প্রতিসরণাজ্ঞ কত ? আমরা জানি

$$w\eta_a = \frac{I}{a\eta_w}$$
$$= \frac{1}{1.33} = 0.75$$

দেওয়া আছে,

বায়ুর সাপেক্ষে পানির প্রতিসরণাজ্ক, $_a\eta_w=1.33$ পানির সাপেক্ষে বায়ুর প্রতিসরণাজ্ক, $_w\eta_a=?$

উ: 0.75


৯.৩ ক্রান্তি কোণ ও পূর্ণ অভ্যন্তরীণ প্রতিফলন

Critical angle and total internal reflection

ক্রান্তি কোণ: ঘন মাধ্যম থেকে আলোকরশ্মি যখন হালকা মাধ্যমে প্রতিসৃত হয় তখন প্রতিসৃত রশ্মিটি হালকা মাধ্যমে অভিলন্দ থেকে আরও দূরে বেঁকে যায়, ফলে আপতন কোণের চেয়ে প্রতিসরণ কোণ বড় হয়।

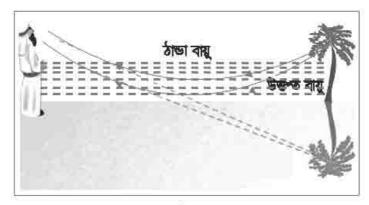
১. ধরি, AB হলো কাচ এবং বায়ু মাধ্যমের বিভেদ তল। কাচ ঘন মাধ্যম এবং বায়ু হালকা মাধ্যম। কাচের মধ্যে P বিন্দু থেকে PQ রশ্মি ক্ষ্দ্র আপতন কোণে AB বিভেদ তলের Q বিন্দুতে আপতিত হলে বায়ু মাধ্যমে প্রতিসৃত রশ্মি QR হবে [চিত্র : ৯.৭ ক]। এক্ষেত্রে আপতন কোণ ($\angle PQN$) এর চেয়ে প্রতিসরণ কোণ ($\angle NQR$) বড় হবে।

১৪৬

২. এখন ঘন মাধ্যমে আপতন কোণ বৃদ্ধি করলে, হালকা মাধ্যমে প্রতিসরণ কোণও বৃদ্ধি পাবে। এইভাবে আপতন কোণ বৃদ্ধি করলে শেষে একটি বিশেষ আপতন কোণ $\angle P_1QN'$ পাওয়া যাবে (চিত্র ৯.৭ খ) যার জন্য প্রতিসৃত রশ্মি QR_1 মাধ্যম দুইটির বিভেদ তল AB বরাবর চলে যাবে অর্থাৎ প্রতিসরণ কোণ $\angle NQR_1=90^0$ হবে। এই অবস্থায় ঘন মাধ্যমের আপতন কোণটিকে ($\angle P_1QN'$) হালকা মাধ্যমের সাপেক্ষে ঘন মাধ্যমের ক্রান্তি কোণ বলে। ৯.৭ খ চিত্রে $\angle P_1QN'=\theta_c$ ক্রান্তি কোণ। এই ক্রান্তি কোণের মানও মাধ্যমদ্বয়ের প্রকৃতি এবং আলোর বর্ণের উপর নির্ভর করে।

পূর্ণ অভ্যন্দতরীণ প্রতিষ্ণলন : ঘন মাধ্যমে আপতন কোণটিকে ক্রান্দিত কোণের চেয়ে আরও একটু বাড়ালে $(i>\theta_c)$ আলোক রশ্মির সবটুকুই দুই মাধ্যমের বিভেদতলে সম্পূর্ণ প্রতিষ্ণলিত হয়ে ঘন মাধ্যমেই ফিরে আসে। এই অবস্থায় আর কোনো প্রতিসৃত রশ্মি পাওয়া যায় না। এই অবস্থায় মাধ্যম দুইটির বিভেদতল দর্পণের মত আচরণ করে। এই ঘটনাকে পূর্ণ অভ্যন্দতরীণ প্রতিষ্ণলন বলে।

[চিত্র ৯.৭ গ] এ ঘন মাধ্যমে আপতন কোণ $\angle P_2QN'$ মাধ্যম দুটির ক্রান্টি কোণ $\theta_{\rm c}$ এর চেয়ে বড়। সেইজন্য P_2Q রিশ্বিটি দুই মাধ্যমের বিভেদ তল AB এর উপর আপতিত হয়ে প্রতিফলনের নিয়মানুসারে QR_2 পথে প্রতিফলিত হয়েছে।

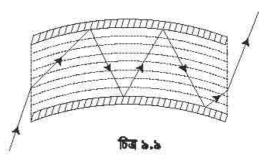

পূর্ণ অভ্যন্তরীণ প্রতিফলনের শর্ত:

- আলোকরশ্মিকে অবশ্যই ঘন মাধ্যম থেকে হালকা মাধ্যমের অভিমুখে যেতে হবে এবং দুই মাধ্যমের বিভেদতলে আপতিত হতে হবে।
- ঘন মাধ্যমে আপতন কোণ ক্রান্তি কোণের চেয়ে বড় হতে হবে।

৯.৪ মরীচিকা

Mirage

মরুভূমিতে তৃষ্ণার্ত পথিক সময়ে দূরবর্তী গাছের উল্টানো প্রতিবিন্দ দেখে মনে করেন সেখানে পানি আছে। কিন্তু গাছের কাছে গেলে তিনি তার ভুল বুঝতে পারেন যে সেখানে কোনো পানি নাই। আলোর পূর্ণ অভ্যন্তরীণ প্রতিফলনের জন্যই এ রকম হয়। এটাই মরীচিকা।


চিত্র : ৯.৮

সূর্যের প্রচন্ডতাপে মর্ভ্মির বালি উন্তন্ত হওয়ার সক্ষো সক্ষো বালিসকল্প বায়ুস্তরগৃলোও গরম হয়ে উঠে। নিচের বায়ু উন্তন্ত ও হালকা হয়, তবে উপরের বায়ু নিচের বায়ু স্তরের ভূলনার ঠাভা থাকায় খন থাকে। এখন পাছ থেকে যে আলো আসে তা ঘনতর মাধ্যম থেকে হালকা মাধ্যমে প্রবেশ করতে থাকে। এর ফলে প্রতিসৃত রশ্মি অভিলন্দ থেকে দূরে সরে যেতে থাকে। এক সময় ঐ আলোকরশ্মি কোনো একটি বায়ুস্তরে ক্রান্তি কোপের চেয়ে বড় কোপে আপতিত হয় ও আলোর পূর্ণ অভ্যন্তরীণ প্রতিফলন ঘটে। ঐ সময়েই গাছের উন্টানো প্রতিবিন্দ দেখা যায় [চিত্র: ৯.৮], যাকে আময়া মরীচিকা বলি।

পর্যবেক্ষণ: গ্রীম্মকালে প্রথম রোদে পিচ ঢালা পথে হাটার সময় বা যানবাহনে বাবার সময় মাঝে মধ্যে হয়তো দেখে থাকবে রাস্তা চিকচিক করছে। মনে হবে যেন রাস্তার পানি জমেছে। এখানেও মরুভূমির মরিচিকার ন্যায় ঘটনা ঘটেছে।

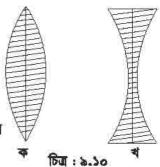
১.৫ অপটিক্যাল ফাইবার বা আলোকীর তম্ভূ Optical fibre

অপটিক্যাপ কাইবার তৈরি করা হয় কাচ বা প্লাস্টিকের খুব সরু,
দীর্ষ নমনীয় অথচ নিরেট ফাইবার বা ভশ্ভূ ঘারা। এই ফাইবারের
পদার্থের প্রতিসরণাক্ত 1.7। কাইবারের উপর অপেকাকৃত কম
প্রতিসরণাক্তের (1.5) পদার্থের একটি আবরণ দেওয়া হয়।
ফাইবারের একপ্রান্তে কুদ্র কোশে আপতিত আলোক রশ্মি
ফাইবারের ভিতরে বারবার পূর্ণ অভ্যন্তরীণভাবে প্রতিফলিত হয়ে
শেষ পর্যন্ত অন্য প্রান্ত দিয়ে বেরিয়ে আসে।

ফাইবারটি বাঁকা বা পাকানো অবস্থায় থাকলেও আলোক এর ভিতর দিয়ে প্রায় কোনো শক্তিকর ছাড়াই পাঠানো যার (চিত্র ৯.৯)। একগুছে অপটিক্যাল ফাইবারকে আলোক নল বলে।

স্থাস্থ্যক্ষেত্র এবং টেলিকমিউনিকেশনে অপটিক্যাল কাইবারের ব্যবহার

কোনো রোলীর পাকস্থালির ভিতরের দেয়াল পরীকা করতে হলে একটি আলোক নলকে মুখের ভিতর দিয়ে পাকস্থালিতে ঢোকানো হয়। এই আলোক নলের এক সেট আলোকীয় তদতু দিয়ে আলো পাঠিয়ে পাকস্থালির দেয়ালের সর্বপ্রকী অংশকে আলোকিত করা হয়, অন্য সেট দিয়ে ওই আলোকিত অংশকে বাইরে থেকে দেখা যায়। এই পশ্বতি এভোক্রোপি নামে পরিচিত। এভাবে আলোক নল ঢুকিয়ে রক্তরাহী ধমনি বা লিরার ব্লক বা হুর্পেন্ডের ভালভগুলোর ক্রিয়া দেখা যায়।

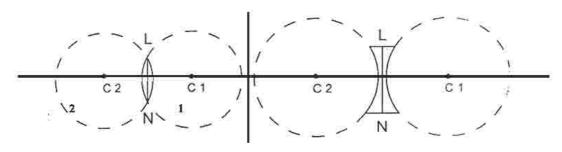

একস্থান থেকে অন্যস্থানে বৈদ্যুতিক সংক্রেত আদানপ্রদানের জন্য অপটিক্যাল ফাইবার ব্যবহার করা হয়; অবশ্য আপে বৈদ্যুতিক সংক্রেতকে প্রথমে আলোক সংক্রেতে রূপান্তরিত করে নিতে হয়। প্রায় ২০০০ টেলিফোন সংক্রেতকে এভাবে একসজ্যে একটি অপটিক্যাল ফাইবারের মধ্য দিয়ে সঞ্চালন করা যায়। এতে সংক্রেতগুলোর তীব্রতার প্রায় কোনো পরিবর্তন হয় না। অপটিক্যাল ফাইবারের ব্যবহার বর্তমানে যোগাযোগ ব্যবস্থায় উল্লেখযোগ্য পরিবর্তন ঘটিয়েছে।

১.৬ দেশ ও তার প্রকারতেদ

Lenses and their classification

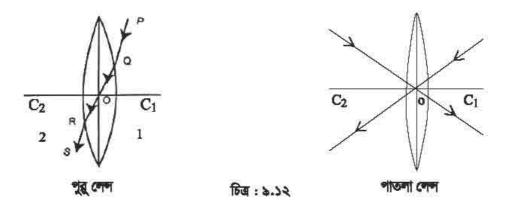
দুইটি গোলীয় পৃষ্ঠ ঘারা সীমাব িকোনো স্বচ্ছ প্রতিসারক মাধ্যমকে লেশ বলে। লেশ দুই রকমের হয় : উত্তল লেশ বা অভিসারী লেশ ও অবতল লেশ বা অপসারী লেশ।

উত্তদ দেল: যে দেশের মধ্যভাগ পুরু এবং প্রাশ্তভাগ সরু তাকে উত্তল দেল বলে। উত্তল দেশের উপর সমাশ্তরাল রশিগুচ্ছ আপতিত হলে প্রতিসরণের পর নির্গত হওয়ার সময় অভিসারী করে বলে উত্তল দেশকে অভিসারী দেশও বলে [চিত্র: ১.১০ ক]।


অবতন লেল: যে লেলের মধ্যতাগ সরু এবং প্রাদতভাগ ক্রমশ পুরু তাকে অবতন লেল বলে। অবতন লেলে সমাদতরাল রশ্মিগুছে আপতিত হলে প্রতিসরণের পর নির্গত হওয়ার সময় অগসারী হয় বলে অবতন লেলকে অগসারী লেলও বলে [চিত্র ১.১০ খ]।

১.৭ দেল সংক্রালত কয়েকটি সংজ্ঞা

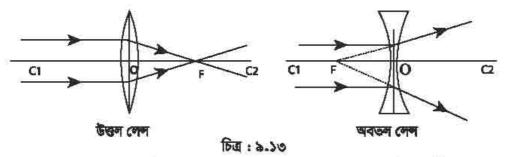
Few definitions related to lens


ৰক্ষতার ক্ষেম্র : শেশের উভয় পৃষ্ঠই এক একটি নির্দিশ্ট গোলকের অংশ। প্রত্যেক গোলকের কেম্রকে ঐ পৃষ্ঠের বক্রতার কেম্র বলে। ১.১১ নং চিত্রে C_1 এবং C_2 , LN লেশের দুইটি বক্রতা কেম্র। যদি লেশের কোনো একটি পৃষ্ঠ গোলীয় না হয়ে সমতল হয় তবে তার বক্রতা কেম্র অসীমে অবস্থিত হবে।

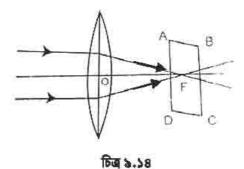
প্রধান অব্দ : লেলের দুইটি গোলীয় পৃষ্ঠ থাকে। এই পৃষ্ঠহয়ের বক্ততা কেন্দ্র দুইটিকে যোগ করলে যে সরলরেখা পাওয়া যায় তাকে ঐ লেলের প্রধান অব্দ বলে। ১.১১নং চিত্রে, C_1C_2 সরলরেখাটি লেলের প্রধান অব্দ।

हिन १ ५.३३

আলোক ক্ষেন্ত্র: আলোক কেন্দ্র হলো লেন্ডের মধ্যে প্রধান অক্ষের উপর অবস্থিত একটি নির্দিন্ট বিন্দু, যার মধ্য দিয়ে কোনো রিশ্ব অভিক্রম করলে প্রতিসরশের পর লেন্ডের অপর পৃষ্ঠ থেকে নির্গত হওয়ার সময় আপতিত রশ্বির সমান্তরাগতাবে নির্গত হয়। ১.১২ নং চিত্রে লেন্ডের একপৃষ্ঠে PQ রশ্বি আপতিত হয়ে QR পথে প্রতিসৃত হয়েছে। এই রশ্বি অপর পৃষ্ঠ থেকে RS পথে নির্গত হয়েছে। নির্গত রশ্বি RS এবং আপতিত রশ্বি PQ পরস্পর সমান্তরাল। এখন লেন্ডের মধ্যে প্রতিসৃত রশ্বি QR প্রধান অক্ষ C_1C_2 কে O বিন্দুতে ছেদ করেছে, O বিন্দু হলো লেন্ডের আলোক কেন্দ্র।

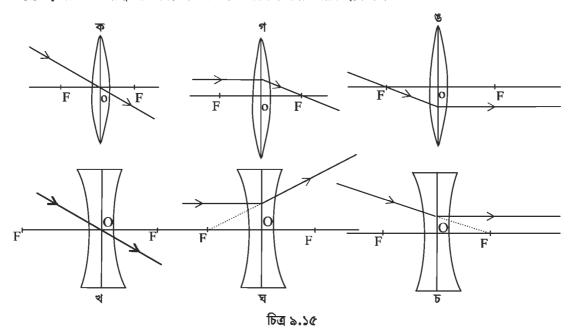


লেলটি যদি পাতলা হয় তবে আলোক কেন্দ্র হচ্ছে লেলের মধ্যে অবস্থিত প্রধান অক্ষের উপর এমন একটি কিন্দু যে কিন্দু দিয়ে আলোক রশ্মি আপত্তিত হলে দিক পরিবর্তন না করে প্রতিসৃত হয়।


প্রধান কোকাস: লেলের প্রধান অব্দের সমাশতরাগ এবং নিকটবর্তী রশ্মিগুছে প্রতিসরণের পর প্রধান অব্দের উপর যে বিন্দুতে মিশিত হয় (উত্তপ লেলের ক্ষেত্রে) অথবা যে বিন্দু থেকে অপসৃত হচ্ছে বলে মনে হয় (অবতগ লেলের ক্ষেত্রে), সেই বিন্দুকে লেলের প্রধান ফোকাস বলে। ১.১৩ নং চিত্রে লেলের প্রধান ফোকাস F।

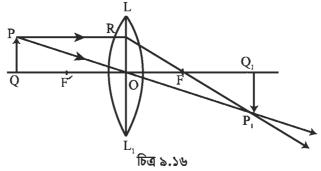
কোকাস দূরত্ব: শেলের আলোক কেন্দ্র থেকে প্রধান ফোকাস পর্যন্ত দূরত্বকে কোকাস দূরত্ব বলে। ১.১৩ নং চিত্রে

OF শেলের ফোকাস দূরত্ব। ফোকাস দূরত্বকে f ছারা সূচিত করা হয়।


কোকাস তল : প্রধান কোকাসের মধ্য দিরে দেশের প্রধান অক্ষের সজ্ঞো দম্বভাবে অবস্থিত কল্পিত সমতলকে দেশের কোকাস তল বলে। ১.১৪ নং চিত্রে ABCD হচ্ছে কোকাস তল।

দেলে রশ্যি চিত্র অক্সনের নিয়মাক্নী

- ১. পেলের আলোক কেন্দ্র দিয়ে আগতিত রশ্মি প্রতিসরণের পর সোজাসুজি চলে যায় (চিত্র ১.১৫ ক ও খ)
- ২. লেন্দের প্রধান অক্দের সমান্তরাল রাশ্মি প্রতিসরণের পর প্রধান কোকাস দিয়ে যায় (উন্তল লেন্দে) [চিত্র ১৫ গ] বা প্রধান কোকাস থেকে আসছে বলে মনে হয় (অবতল লেন্দে) [চিত্র ১৫ ঘ)

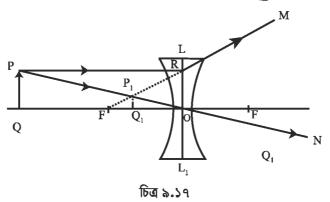

 ৩. লেন্সের প্রধান ফোকাসের মধ্য দিয়ে (উত্তল লেন্সে) [চিত্র ১৫ ঙ] বা প্রধান ফোকাস অভিমুখী (অবতল লেন্সে) [চিত্র ১৫ চ] আপতিত রশ্মি প্রতিসরণের পর প্রধান অক্ষের সমান্তরাল হয়ে যায়।

উত্তল লেলে প্রতিবিম্প গঠন

 LOL_1 একটি উত্তল লেম । FOF' প্রধান অক্ষ, O আলোক কেন্দ্র, F প্রধান ফোকাস । এই লেমের প্রধান অক্ষের উপর PQ একটি কম্ভূকে লেম্সটির ফোকাস দূরত্বের চেয়ে বেশি কিম্ভূ দ্বিগুণ ফোকাস দূরত্বের কম দূরে খাড়াভাবে রাখা হলো ।

এখন P থেকে আগত PR রশ্মি প্রধান অক্ষের সমান্তরালভাবে এসে লেন্সের মধ্য দিয়ে প্রতিসৃত হওয়ার পর প্রধান ফোকাস F-এর মধ্য দিয়ে RFP_1 পথে যায়। P থেকে নির্গত অন্য একটি রশ্মি PO পথে আলোক কেন্দ্র O তে আপতিত হয়ে সোজাসুদ্ধি OP_1 বরাবর প্রতিসৃত হলো। RFP_1 এবং OP_1 রশ্মি দুইটি পরস্পর P_1 কিন্দুতে ছেদ করে। P_1 কিন্দু থেকে অক্ষের উপর P_1Q_1 লম্ঘটানা হলো। P_1Q_1 হলো PQ এর বাস্তব প্রতিবিম্ঘ। এখানে OQ বস্তুর দূরত্ব এবং OQ_1 প্রতিবিশ্বের দূরত্ব (চিত্র ১.১৬)।

এই ক্ষেত্রে প্রতিবিন্দ বাস্তব, উন্টা ও বিবর্ধিত হয়েছে।


লক্ষবস্তুর বিভিন্ন অবস্থানের উপর নির্ভর করে প্রতিবিন্দ বাস্তব, অবাস্তব; সোজা, উল্টা; বিবর্ধিত, খর্বিত বা আকারে সমান হতে পারে।

শক্ষবস্তু উত্তল লেন্সের প্রধান ফোকাসের ভিতরে থাকলে প্রতিবিস্ব অবাস্তব সোজা ও বিবর্ধিত হবে।

কাছ: উত্তল লেন্সের ফোকাস দূরত্বের মধ্যে কম্তুর অকস্থানের জন্য চিত্র এঁকে প্রতিবিন্দ দেখাও।

অবতল লেলে প্রতিবিম্ব গঠন

ধরা যাক LOL_1 একটি অবতল লেশ। FOF এর প্রধান অক্ষ্, O আলোক কেন্দ্র, F প্রধান ফোকাস। লেশের সামনে PQ একটি লক্ষবস্তু প্রধান অক্ষের উপর লম্বভাবে অবস্থিত (চিত্র ৯.১৭)। PQ এর প্রতিবিম্ব অঙ্কন করতে হবে।

P বিন্দু থেকে নিঃসৃত একটি আলোক রশ্মি PR প্রধান অক্ষের সমান্তরাল হয়ে লেন্সে R বিন্দুতে আপতিত হলে প্রতিসরণের পর RM পথে এমনভাবে প্রতিসরিত হয় যেন রশ্মিটি প্রধান ফোকাস F থেকে আসছে বলে মনে হয়। P থেকে আর একটি রশ্মি PO আলোক কেন্দ্র দিয়ে লেন্সে আপতিত হয়ে সোজাসুজি PON পথে প্রতিসৃত হয়। এই প্রতিসৃত রশ্মি দুইটি অপসারী বলে মিলিত হয় না। এদেরকে পেছন দিকে বাড়িয়ে দিলে P_1 কিন্দু থেকে আসছে বলে মনে হয়। সুতরাং P_1 কিন্দুই হচ্ছে P কিন্দুর অবাস্তব প্রতিবিন্দ্র। এখন P_1 থেকে প্রধান অক্ষের উপর P_1Q_1 লম্ম্ব টানলে P_1Q_1 হবে PQ লক্ষ্বস্তুর প্রতিবিন্দ্র। এই প্রতিবিন্দ্র অবাস্তব, সোজা এবং আকারে লক্ষ্বস্তুর চেয়ে ছোট। অবতল লেন্স সর্বদা অবাস্তব, সোজা এবং ছোট আকারের প্রতিবিন্দ্র গঠন করে।

লেন্স চেনার উপায় : লেন্সের খুব কাছাকাছি কিন্তু পিছনে একটা আঙুল ধরলে যদি এটিকে সোজা এবং আকারে বড় দেখায় তবে লেন্সটি উত্তল। সোজা এবং আকারে ছোট দেখালে লেন্সটি অবতল। এভাবে লেন্স সনাক্ত করা যায়।

করে দেখো : তোমার বই এর দেখার কাছাকাছি একটি উত্তল লেন্স ধর। দেখাগুলো বড় দেখতে পাচ্ছো কী ? কেন?

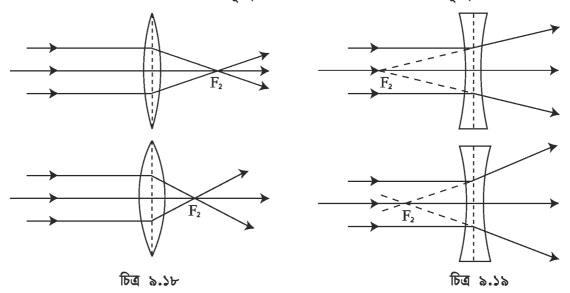
উত্তল লেন্স কর্তৃক প্রতিসরণের পর বিবর্ধিত প্রতিবিম্ব তোমার চোখে পড়েছে বলে লেখাগুলো বড় দেখাচ্ছে। কোনো নির্দিষ্ট লেন্সের অর্থাৎ নির্দিষ্ট ফোকাস দূরত্ব f এর লেন্সের সামনে u দূরত্বে যদি কোনো লক্ষবস্তু থাকে তাহলে যে অবস্থানে প্রতিবিম্ব সৃষ্টি হবে তার দূরত্ব v নিম্নোক্ত সমীকরণ থেকে পাওয়া যায়

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

এ সমীকরণে মান বসানোর ক্ষেত্রে উত্তল লেন্সের জন্য f এর মান ধনাত্মক। অবতল লেন্সের জন্য f এর মান ঋণাত্মক এবং u এর মান ধনাত্মক হলে প্রতিবিস্পটি বাস্তব আর ঋণাত্মক হলে প্রতিবিস্পটি অবাস্তব।

तिवर्धन ।

লেন্সের ক্ষেত্রে বিবর্ধনকে লক্ষবস্তুর দূরত্ব ও প্রতিবিম্বের দূরত্বের সাহায্যে নিম্নোক্তভাবে প্রকাশ করা যায়।


$$m=-\frac{v}{u}$$

u এবং v এর যথাযথ চিহ্নসহকারে মান বসালে m যদি ধনাত্মক হয় তাহলে প্রতিবিম্বটি সোজা হবে। আর m ঋণাত্মক হলে প্রতিবিম্ব উন্টা হবে।

১.৮ লেন্সের ক্ষমতা

Power of a lens

মনে করো দুইটি উত্তল লেন্স (চিত্র ৯.১৮)। প্রথমটির ফোকাস দূরত্ব বেশি এবং দ্বিতীয়টির ফোকাস দূরত্ব কম। এখন যদি একগুচ্ছ সমান্তরাল রিশ্ম লেন্স দুইটির প্রধান অক্ষের সমান্তরালভাবে এসে আপতিত হয় তবে তারা লেন্স কর্তৃক প্রতিসৃত হয়ে প্রধান ফোকাসে মিলিত হবে। প্রথম লেন্সের ক্ষেত্রে ঐ ফোকাস বিন্দু লেন্সের যত দূরে হবে দ্বিতীয় লেন্সের ক্ষেত্রে তা হবে না বরং কম হবে। উত্তল লেন্সের ক্ষমতা বলতে আমরা বুঝি যে ঐ লেন্স সমান্তরাল রিশ্মিগুচ্ছকে কত বেশি কাছে মিলাতে পারে বা অভিসারী করতে পারে। এক্ষেত্রে বলা যায় প্রথম লেন্সের ক্ষমতা কম আর দ্বিতীয় লেন্সের ক্ষমতা বেশি। লেন্সের ক্ষমতা কম হলে ফোকাস দূরত্ব বেশি আর ক্ষমতা বেশি হলে ফোকাস দূরত্ব কম।

৯.১৯ নং চিত্রে অবতল লেন্সে সমান্তরালভাবে আগত আলোক রশ্মিগুচ্ছের প্রতিসরণ দেখানো হয়েছে। এক্ষেত্রে যে লেন্স সমান্তরালভাবে আগত আলোক রশ্মিগুচ্ছকে প্রতিসরণের পর যত বেশি ছড়িয়ে দিতে পারে বা অপসারী করতে পারে তার ক্ষমতা তত বেশি। এক্ষেত্রেও লেন্সের ফোকাস দূরত্ব যত কম, ক্ষমতা তত বেশি।

সুতরাং আমরা সাধারণভাবে বলতে পারি কোনো লেন্সের অভিসারী বা অপসারী করার সামর্থ্যকে তার ক্ষমতা বলে।

ক্ষমতা P এবং ফোকাস দূরত্ব f এর মধ্যে একটি সম্পর্ক আছে। সম্পর্কটি হচ্ছে, $P=rac{1}{f}$

এক মিটার ফোকাস দূরত্ববিশিষ্ট কোনো লেন্সের ক্ষমতাকে 1 ডায়াপ্টার (Dioptre) বলে। চক্ষু বিশেষজ্ঞরা চশমার কাচের যে ক্ষমতা লিখে থাকেন তা ডায়াপ্টার এককে লিখেন।

চিহ্নের প্রথা: সকল দূরত্ব লেন্সের আলোক কেন্দ্র থেকে পরিমাপ করতে হবে। সকল বাস্তব দূরত্ব ধনাআক, বাস্তব দূরত্ব বলতে আলোকরশ্মি প্রকৃতপক্ষে যে দূরত্ব অতিক্রম করে সেই দূরত্বকে বুঝায়। সুতরাং সকল বাস্তব লক্ষবস্তু,বাস্তব প্রতিবিশ্ব বা বাস্তব ফোকাসের দূরত্বকে ধনাআক ধরা হয়। সকল অবাস্তব দূরত্ব ঋণাআক। অবাস্তব লক্ষবস্তু, অবাস্তব প্রতিবিশ্ব ও অবাস্তব ফোকাস দূরত্বকে অবাস্তব দূরত্ব ধরা হয়।

উত্তল লেন্সের ফোকাস দূরত্ব ধনাত্মক এবং অবতল লেন্সের ফোকাস দূরত্ব উভয়ই ঋণাত্মক।

গাণিতিক উদাহরণ ৯.৩ : কোনো লেশের ফোকাস দূরত্ব + 0.1 m হলে ক্ষমতা কত?

জামরা জানি ,
$$P=\frac{1}{f}=\frac{1}{+0.1~m}=~10~\mathrm{D}$$
 দেওয়া আছে , ফোকাস দূরজ্ , $f=+0.1~\mathrm{m}$ জমতা , $P=?$

১.১ চোখের গঠন

- অকিপোলক (Eye-ball) : চোখের কোটরের মধ্যে অবস্থিত এর গোলাকার অংশকে অকিগোলক বলে। এর সামনে
 ও পিছনের অংশ খানিকটা চ্যান্টা। এটি চোখের কোটরের মধ্যে একটা নির্দিক্ট সীমার চারদিকে ঘুরতে পারে।
- ২. শ্বেভমন্ডল (Sclerotic) : এটি শক্ত, সাদা, অস্বচ্ছ তল্ডু দিয়ে তৈরি অক্ষিগোলকের বাইরের জাবরণ (চিত্র ১.২০)। এটি চোখের আকৃতি ঠিক রাখে। বাইরের নানা প্রকার অনিউ হতে চোখকে রক্ষা করে।
- ৬. বর্নিরা (Cornea) : এটি শ্বেডমন্ডলের সামনের অংশ। শ্বেডমন্ডলের এ অংশ স্বচ্ছ এবং বাইরের দিকে কিছুটা উত্তল।
- ৫. আইরিস (Iris) : কর্নিয়ার ঠিক পিছনে অবস্থিত একটি অস্কছ পর্দাকে আইরিস বলে। আইরিসের রং বিভিন্ন লোকের বিভিন্ন রকমের হয়। সাধারণত এর রং কালো, হালকা নীল বা গাঢ় বাদামী হয়। আইরিস চক্ষ্রেলের উপর আপতিত আলোর পরিমাণ নিয়ল্রেণ করে।

विद्य : ३.२०

- ৬. চোখের মণি ও ভারারস্ত্রা (Pupil) : আইরিসের মাঝখানে একটি ছোট ছিদ্র থাকে। একে চোখের মণি বা ভারারস্ত্র বলে। ভারারস্ত্রের মধ্য দিয়ে আলো চোখের ভিভরে প্রবেশ করে।
- ৭. চক্ষ্লেল (Eye Lens) : চোখের মণির ঠিক পিছনে অবস্থিত এটি চোখের সবচেয়ে গুরুত্বপূর্ণ অংশ। এটি স্বচ্ছ জৈব পদার্থের তৈরি। লেলের পিছনের দিকের বক্রতা সামনের দিকের বক্রতার চেয়ে কিছুটা বেশি। লেলটি অক্ষিগোলকের সাথে সিলিয়ারি মাংসপেশি ও সাসপেলারি লিগামেন্ট ঘারা আটকানো থাকে। এই মাংসপেশি ও লিগামেন্টগুলোর সংকোচন ও প্রসারণের ফলে চক্ষ্ লেলের বক্রতা পরিবর্তিত হয় ফলে লেলের ফোকাস দ্রত্বের পরিবর্তন ঘটে। দ্রের বা কাছের জিনিস দেখার জন্য চক্ষ্ লেলের ফোকাস দ্রত্বের পরিবর্তন করার প্রয়োজন হয়।
- ৮. রেটিনা (Retina) : চক্ষ্ লেব্দের পেছনে অবস্থিত অক্ষিগোলকের ভিতরের পৃষ্ঠের গোলাপী রম্ভের ঈষদচ্ছ আলোক সংবেদন আবরণকে রেটিনা বলে। এটি রড ও কোন (rods & cones) নামে কতগুলো স্নায়্তশ্তু ধারা তৈরি। এই তশ্তুগুলো চক্ষ্ স্নায়্র সাথে সংযুক্ত থাকে। রেটিনার উপর আলো পড়লে তা ঐ স্নায়্তশ্তুতে এক প্রকার উত্তেজনা সৃষ্টি করে ফলে মস্ভিকে দর্শনের অনুভূতি জাগে।
- ৯. আক্রাস হিউমার ও ভিট্রিরাস হিউমার (Aqueous humour and vitreous humour) : কর্নিয়া ও চক্ষ্ লেন্সের মধ্যবর্তী স্থান যে স্বচ্ছ লবণাক্ত জলীয় পদার্থে পূর্ণ থাকে তাকে অ্যাক্সাস হিউমার বলে। রেটিনা ও চক্ষ্ লেন্সের মধ্যবর্তী স্থান যে জেলি জাতীয় পদার্থে পূর্ণ থাকে তাকে ভিট্রিয়াস হিউমার বলে।

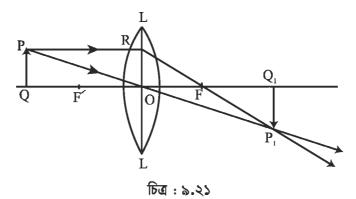
১৫৪

চোখের উপযোজন: একটি উত্তল লেন্সের সামনে ফোকাস দূরত্বের বাইরে কোনো বস্তু রাখলে লেন্সের পিছনে বস্তুটির একটি বাসতব প্রতিবিম্প্র গঠিত হয়। লেন্সের পিছনে একট পর্দা রাখলে পর্দার উপর বস্তুটির একটি উল্টো প্রতিবিম্প্র দেখা যায়। পরীক্ষা করলে দেখা যায় যে পর্দাটির একটি নির্দিঊ অবস্থানে প্রতিবিম্প্র সবচেয়ে পরিম্কার হয়। একটি বস্তুকে যদি লেন্সের নিকটে আনা হয় বা লেন্স থেকে দূরে সরিয়ে নেওয়া হয় তাহলে পরিম্কার প্রতিবিম্প্র পাওয়ার জন্য পর্দাটিকে সামনে বা পিছনে সরাতে হয়। এখন আমরা যদি পর্দার পূর্ব অবস্থানে পরিম্কার বিম্প্র পেতে চাই তাহলে ভিন্ন ফোকাস দূরত্বের লেন্স ব্যবহার করতে হবে।

চোখের ক্ষেত্রে ঠিক একই রকম ঘটনা ঘটে। কর্নিয়া, অ্যাকুয়াস হিউমার, চক্ষু লেন্স ও ভিট্রিয়াস হিউমার একত্রে একটি অভিসারী লেন্সের কাজ করে। চোখের সামনে কোনো বস্তু থাকলে সেই বস্তুর প্রতিবিম্প যদি রেটিনার উপর পড়ে তাহলে মস্তিকেক দর্শনের অনুভূতি জাগে এবং আমরা সেই বস্তু দেখতে পাই। আমরা চোখের সাহায্যে বিভিন্ন দূরত্বের বস্তু দেখি। চোখের লেন্সের একটি বিশেষ গুণ হচ্ছে এর আকৃতি প্রয়োজন মতো বদলে যায় ফলে ফোকাস দূরত্বের পরিবর্তনের ফলে লক্ষবস্তুর যেকোনো অবস্থানের জন্য লেন্স থেকে একই দূরত্বে অর্থাৎ রেটিনার উপর স্পেন্ট বিম্প গঠিত হয়। যেকোনো দূরত্বের বস্তু দেখার জন্য চোখের লেন্সের ফোকাস দূরত্ব নিয়নত্রণ করার এই ক্ষমতাকে চোখের উপযোজন বলে।

স্পর্ফ দর্শনের ন্যুনতম দূরত্ব : আমাদের দৈনন্দিন জীবনের অভিজ্ঞতা থেকে আমরা দেখতে পাই যেকোনো বস্তুকে চোখের যত নিকটে নিয়ে আসা যায় বস্তুটিও তত স্পষ্ট দেখা যায়। কিন্তু কাছে আনতে আনতে এমন একটা দূরত্ব আসে যখন আর বস্তুটি খুব স্পষ্ট দেখা যায় না। যে ন্যুনতম দূরত্ব পর্যন্ত চোখ বিনা শ্রান্তিতে স্পষ্ট দেখতে পায় তাকে স্পষ্ট দর্শনের ন্যুনতম দূরত্ব বলে। স্বাভাবিক চোখের জন্য স্পষ্ট দর্শনের ন্যুনতম দূরত্ব প্রায় ২৫ সেন্টিমিটার। চোখ থেকে ২৫ সেন্টিমিটার দূরবর্তী কিন্দুকে চোখের নিকট কিন্দু বলে। কোনো বস্তু ২৫ সেন্টিমিটারের কম দূরত্বে থাকলে তাকে স্পষ্ট দেখা যায় না।

সবচেয়ে বেশি যে দূরত্বে কোনো বস্তু থাকলে তা স্পষ্ট দেখা যায় তাকে চোখের দূরক্দিপুও বলে। স্বাভাবিক চোখের জন্য দূরক্দিপু অসীম দূরত্বে অবিস্থত হয়। অর্থাৎ স্বাভাবিক চোখ বহুদূর পর্যন্ত স্পষ্ট দেখতে পায়।


দর্শনানুভূতির স্থায়িত্বকাল: চোখের সামনে কোনো বস্তু রাখলে রেটিনায় তার প্রতিবিস্প গঠিত হয় এবং আমরা বস্তুটি দেখতে পাই। এখন যদি বস্তুটিকে চোখের সম্মুখ থেকে সরিয়ে নেওয়া হয় তাহলে সরিয়ে নেওয়ার 0.1 সেকেন্ড পর্যন্ত এর অনুভূতি মস্তিদেক থেকে যায়। এই সময়কে দর্শনানুভূতির স্থায়িত্বকাল বলে।

দুইটি চোখ থাকার সুবিধা: দুইটি চোখ দিয়ে একটি বস্তু দেখলে আমরা কেবলমাত্র একটি বস্তুই দেখতে পাই। যদিও প্রত্যেকটি চোখ আপন আপন রেটিনায় প্রতিবিন্দ্র গঠন করে, কিল্ডু মস্তিম্ক দুইটি ভিন্ন প্রতিবিন্দ্রকে একটি প্রতিবিন্দ্রে পরিণত করে। দুইটি চোখ থাকার জন্য দূরত্ব নির্ভূলভাবে পরিমাপ করা যায়। তাই একটি চোখ কম্ম রেখে সুইয়ে সূতা পরাতে খুবই অসুবিধা হয়। তাছাড়া বস্তুর তুলনায় দুইটি চোখের বিভিন্ন অবস্থানের জন্য ডান চোখ ডান দিকটা বেশি এবং বাম চোখ বাম দিকটা বেশি দেখে। দুই চোখ দিয়ে বস্তু দেখলে দুইটি ভিন্ন প্রতিবিন্দের উপরিপাত ঘটবে এবং বস্তুকে ভালোভাবে দেখা যাবে।

১.১০ চোখের ব্রিয়া

Function of an eye

পূর্বেই আমরা জেনেছি যে,আমাদের চোখের মণির ঠিক পিছনে একটি করে উত্তল লেন্স আছে যার নাম চক্ষু লেন্স। দূরের বা কাছের জিনিস দেখার জন্য চক্ষু লেন্সের ফোকাস দূরত্বের পরিবর্তন করার প্রয়োজন হয়।

চিত্রে চক্ষু লেন্স দেখানো হয়েছে। চোখের সামনে তথা লেন্সের সামনে PQ একটি বস্তু। বস্তুটির P বিন্দু থেকে একটি আলোকরিশ্ম PR, প্রধান অক্ষের সমানতরালে যেয়ে লেন্সের R বিন্দুতে আপতিত হলো। লেন্সে প্রতিসরণের পর তা RFP_1 পথে গেল। P থেকে আর একটি আলোকরিশ্ম PO পথে লেন্সের আলোকবেন্দ্র আপতিত হয়ে সোজাসুজি OP_1 বরাবর প্রতিসৃত হলো। RP_1 এবং OP_1 প্রতিসৃত রিশ্ম দুইটি P_1 বিন্দুতে মিলিত হলো। এবার প্রধান অক্ষের উপর P_1Q_1 লমু আঁকলে P_1Q_1 হবে PQ এর বাস্তব ও উন্টা প্রতিবিন্দ্র।

প্রতিবিম্বটি যেখানে গঠিত হলো তা হলো চোখের রেটিনা। এটি রড ও কোন (rods and cones) নামে কতগুলো আলোক সংবেদনশীল কোষ তথা স্নায়ুতন্তু দ্বারা তৈরি। রেটিনার উপর বিন্দ্র বা আলো পড়লে তা ঐ স্নায়ুতন্তুতে এক প্রকার উত্তেজনা সৃষ্টি করে ফলে মস্তিম্বেক দর্শনের অনুভূতি জাগে এবং আমরা সেই বস্তু দেখতে পাই।

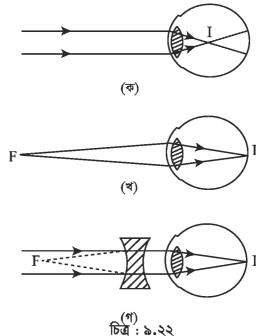
উল্লেখ্য যে রেটিনার উপর বস্তুর উল্টো প্রতিবিন্দ্র পড়ে। এই অনুভূতি চক্ষু নার্ভের সাহায্যে মস্তিন্দেক চলে যায়। রেটিনায় গঠিত বস্তুর প্রতিবিন্দ্র উল্টো হলেও মস্তিন্দেকর বিশেষ প্রক্রিয়ার জন্য আমরা বস্তুকে সোজা দেখি।

৯.১১ চোখের ত্র্টি ও তার প্রতিকার

Defects of vision and their remedy

স্বাভাবিক চোখের দৃষ্টির পাল্লা 25 cm থেকে অসীম পর্যন্ত বিস্তৃত অর্থাৎ, স্বাভাবিক চোখ 25 cm থেকে অসীম দূরত্বের মধ্যে যেকোনো বস্তু স্পষ্ট দেখতে পায়। যদি কোনো চোখ এই পাল্লার মধ্যে কোনো বস্তুকে স্পষ্ট দেখতে না পায় তাহলে সেই চোখ ত্রুটিপূর্ণ বলে ধরা হয়। চোখে প্রধানত দুই ধরনের ত্রুটি দেখা যায়। যথা—

- ১. ব্লুস্ব দৃষ্টি (Short sight or Myopia)
- ২. দীর্ঘ দৃষ্টি (Long sight or Hypermetropia)

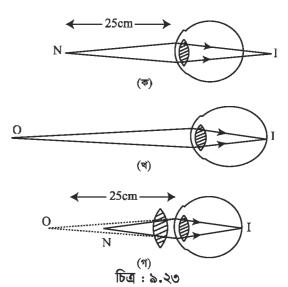

১. হ্রুস্ব **দৃফি:** এই ঝুট্রিস্ত চোখ দূরের জিনিস ভালোভাবে দেখতে পায় না কিন্তু কাছের জিনিস স্পষ্ট দেখতে পায়। এমনকি

এই চোখের নিকট বিন্দু 25 cm এরও কম হয়।সূতরাং চোখের নিকটবিন্দু 25 cm এরও কম হলে সেটাও হ্রুস্ব দৃষ্টি।

কারণ : অক্ষিগোলকের ব্যাসার্ধ বেড়ে গেলে বা চোখের লেন্সের ফোকাস দূরত্ব কমে গেলে অর্থাৎ অভিসারী ক্ষমতা বেড়ে গেলে এই ব্রুটি দেখা দেয় [৯.২২ (ক)]।

বৃটির ফল : এক্ষেত্রে অনেক দূরবর্তী বস্তু থেকে আগত সমান্তরাল রিশাগুচ্ছ চোখের লেন্সে প্রতিসরিত হয়ে রেটিনার সামনে I বিন্দুতে মিলিত হয় [চিত্র ৯.২২ (ক)] ফলে লক্ষবস্তু স্পষ্ট দেখা যায় না। এই চোখের দূরবিন্দু অসীমের পরিবর্তে F বিন্দুতে হয় তাই এই চোখ F এর বেশি দূরের কোনো বস্তু স্পষ্ট দেখতে পায় না [চিত্র ৯.২২ (খ)]

প্রতিকার: চোখের লেন্সের অভিসারী ক্ষমতা বেড়ে যাবার জন্য এই ব্রুটির উদ্ভব হয়। দৃষ্টির এ ব্রুটি সংশোধন করার জন্য সহায়ক লেন্স বা চশমা হিসেবে অবতল লেন্স ব্যবহার করা হয় চিত্র ৯.২২ (গ)।



তাছাড়া একমাত্র অবতল লেপই লক্ষবস্তুর চেয়েও নিকটে সোজা ও অবাস্তব প্রতিবিন্দ্র গঠন করে বলে এক্ষেত্রে চোখের লেপের সামনে সহায়ক লেপ বা চশমা হিসেবে অবতল লেপ ব্যবহার করতে হবে। এই লেপেটির ক্ষমতা তথা ফোকাস দূরত্ব এমন হবে যা অসীম দূরত্বে অবস্থিত লক্ষবস্তুর প্রতিবিন্দ্র ত্রুটিপূর্ণ চোখের দূরবিন্দুতে গঠন করে [চিত্র ৯.২২ (গ)]। আমরা জানি অসীম দূরত্বে অবস্থিত লক্ষবস্তুর প্রতিবিন্দ্র ফোকাসে গঠিত হয়। সুতরাং অবতল লেপের ফোকাস দূরত্ব ত্রুটিপূর্ণ চোখের দূরবিন্দুর দূরত্বের সমান হতে হবে।

২. দীর্ঘদৃষ্টি: এই ত্রুটিগ্রস্ত চোখ দূরের জিনিস দেখতে পায় কিন্তু কাছের জিনিস স্পস্ট দেখতে পায় না। চোখের লেন্সের ফোকাস দূরত্ব বেড়ে গেলে অর্থাৎ, অভিসারী ক্ষমতা কমে গেলে চোখে এ ধরনের ত্রুটি দেখা দেয় [চিত্র ৯.২৩ (ক)]।

বৃটির ফল: এক্ষেত্রে চোখের সামনে লক্ষবস্তু থেকে আগত আলোক রশ্মিগৃচ্ছ চোখের লেন্সে প্রতিসরিত হয়ে রেটিনার পেছনে I কিন্দুতে মিলিত হয় [চিত্র ৯.২৩ (ক)]। ফলে লক্ষবস্তু স্পষ্ট দেখা যায় না। [এই চোখের নিকট কিন্দু N থেকে দূরে সরে O কিন্দুতে চলে যায় যা $25 \, \mathrm{cm}$ চেয়ে অনেক বেশি। তাই এ চোখে O এর চেয়ে নিকটবতী স্থানের বস্তু স্পষ্ট দেখা যায় না [চিত্র ৯.২৪ (খ)]।

প্রতিকার: চোখের লেন্সের অভিসারী ক্ষমতা কমে যাওয়ার দর্ন এ ত্রুটির উদ্ভব হয়। তাই এ ত্রুটি দূর [চিত্র ৯.২৩ (গ)] করতে চোখের লেন্সের অভিসারী ক্ষমতা বাড়াতে হয়। এ জন্যে সহায়ক লেন্স হিসেবে উত্তল লেন্স ব্যবহার করা হয়।

তাছাড়া একমাত্র উত্তল লেন্সই লক্ষবস্তুর চেয়েও দূরে সোজা অবাস্তব প্রতিবিন্দ্র গঠন করে। এক্ষেত্রে তাই চোখের লেন্সের সামনে সহায়ক লেন্স বা চশমা হিসেবে এমন ক্ষমতা তথা ফোকাস দূরত্ববিশিষ্ট উত্তল লেন্স ব্যবহার করতে হবে যা স্বাভাবিক চোখের নিকট বিন্দু N এ স্থাপিত লক্ষবস্তুর বিন্দ্র ত্র্টিপূর্ণ চোখের নিকট বিন্দু O তে গঠন করে [চিত্র ৯.২৩ (গ)]।

১.১২ রঙিন বস্তুর আলোকীয় উপলব্ধি

Perceptions of coloured objects

আমরা যখন কোনো বস্তু দেখি তখন বস্তু থেকে আলো এসে আমাদের চোখে পড়ে। চক্ষু লেন্স কর্তৃক উক্ত আলো প্রতিসরিত হয়ে বস্তুর একটি প্রতিবিন্দ্র রেটিনায় গঠন করে। রেটিনায় বহুসংখ্যক স্নায়ু থাকে যারা এই অনুভূতি মস্তিক্ষেক প্রেরণ করে। মস্তিক্ষেক নিখুঁত বিশ্লেষণের পর আমরা সেই বস্তুকে দেখতে পাই। রেটিনা থেকে যে নার্ভগুলো মস্তিক্ষেক গিয়েছে সেগুলোর নাম রড ও কোন (rods and cones)। এদের মধ্যে কোনগুলো বর্ণ সংবেদনশীল (colour sensitive)। তিন ধরনের কোণ আছে নীলবর্ণ সংবেদনশীল কোন, লাল বর্ণ সংবেদনশীল কোন এবং সবুজ বর্ণ সংবেদনশীল কোন। কোনো বর্ণ যতই মিশ্র বা জটিল হোক না কেন চোখ সকল বর্ণকে মাত্র এই তিনটি বর্ণে ধারণ করে। রেটিনার কোনগুলো এই ধারণকৃত তথ্য মস্তিক্ষেক প্রেরণ করে। মস্তিক্ষ্ক আবার বিশেষ প্রক্রিয়ার মাধ্যমে সকল বর্ণকে আলাদা করে দেয়। এভাবেই আমরা রঙিন বস্তুর আলোকীয় উপলব্ধি পাই।

১.১৩ দৈনন্দিন জীবনে আলোর প্রতিসরণের ব্যবহার

Uses of refraction in our daily life

আমাদের চোখে একটি উত্তল লেশ আছে। যখন আমরা কোনো বস্তু দেখি তখন আলো ঐ বস্তু থেকে এসে চোখের লেশ কর্তৃক প্রতিসৃত হয়ে রেটিনার উপর পড়ে। রেটিনায় ঐ বস্তুর একটি বাস্তব ও উল্টা প্রতিবিম্ব গঠন করার পর আমরা বস্তুকে দেখতে পাই। সুতরাং আমাদেরকে দেখার কাজে সাহায্য করছে আলোর প্রতিসরণ।

অনেকের চোখে দৃষ্টির ত্রুটি আছে। কেউ হয়তো কাছের বস্তু দেখে না কেউ আবার দূরেরটা দেখে না। এসব ত্রুটি দূর করার জন্য আমরা নির্দিষ্ট ক্ষমতার লেশ দ্বারা তৈরি চশমা ব্যবহার করি। চশমার মধ্য দিয়ে আগত আলোক রশ্মি প্রতিসৃত হয়ে চোখে পড়ে এবং বস্তু সঠিকভাবে দেখতে সহায়তা করে। সূতরাং দৃষ্টির ত্রুটি দূর করতে আলোর প্রতিসরণ কাজ করে।

আমরা ক্যামেরা দিয়ে ছবি তুলি, মাইক্রোস্কোপ দিয়ে অতিক্ষুদ্র জিনিস বড় করে দেখি, টেলিস্কোপ দিয়ে দূরের জিনিস কাছে দেখি এসব যন্ত্রেই আলোর প্রতিসরণ ধর্মকে ব্যবহার করা হয়।

স্বাস্থ্যক্ষেত্রে ও টেলিকমিউনিকেশনে আমরা যে অপটিক্যাল ফাইবার ব্যবহার করে থাকি তাও আলোর প্রতিসরণ ধর্মের অবদান। আমাদের অনেকের ঘরে মাছের এ্যাকুরিয়াম আছে। এখানে কিছু রঙিন মাছ রাখলে তাদের মজার গতিবিধি দেখা যায়। মাছ থেকে প্রথমে আলো পানির মধ্য দিয়ে এসে কাচের বক্সে আপতিত হয়। কাচে প্রতিসরণের পর আমাদের চোখে সেই দৃশ্য আসে। সুতরাং এখানেও প্রতিসরণের অবদান রয়েছে।

অনুসন্ধান : ১.১

উত্তল লেন্স ব্যবহার করে প্রতিবিম্ব সৃষ্টি ও প্রদর্শন

উদ্দেশ্য : ল্যাবরেটরিতে উত্তল লেন্স ব্যবহার এবং বাস্তব প্রতিবিম্ব সৃষ্টি।

যশ্বপাতি : একটি উত্তল লেন্স।

কাচ্ছের ধারা

১. একটি উত্তল লেন্স নাও।

২. লেন্সটি নিয়ে তোমার ল্যাবরেটরির দরজা অথবা জানালার নিকট দাঁড়াও।

৩. এবার লেন্সটিকে বাহিরের কোনো দৃশ্য যেমন–গাছপালা, দালান ইত্যাদির দিকে ধরো।

- লেন্সটিকে ডানে বামে নড়াচড়া করে লেন্সের পেছনের রাখা সাদা কাগজের উপর ঐ দৃশ্যের প্রতিবিম্ব তৈরি কর।
- প্রতিবিম্বটিকে স্পষ্ট করার জন্য লেমটিকে কাগজ হতে সামনে বা পিছনে সরাও।
- ৬. কোনো একটি নির্দিষ্ট দূরত্বে তুমি ক্যতুর স্পষ্ট প্রতিবিম্ব কাগজে দেখতে পাবে।
- ৭. এভাবে দূরের বস্তুর স্পষ্ট প্রতিবিন্দ দেয়ালে প্রদর্শন করা যায়।
- প্রতিবিম্বের গঠন আলোচনা কর।

অনুসন্ধান : ১.২

বিভিন্ন ব্যক্তির চোখের স্পষ্ট দর্শনের ন্যূনতম দূরত্ব নির্ণয় ও ব্যবহারযোগ্য চশমা সনাক্তকরণ

উদ্দেশ্য : স্পষ্ট দর্শনের ন্যুনতম দূরত্ব পরিমাপ করে চোখের ত্রুটি চিহ্নিত করা ও ব্যবহারযোগ্য চশমা সনাক্ত করা।

উপকরণ : খবরের কাগজ অথবা বই।

কাজের ধারা

- তোমার শিক্ষক, সহপাঠী, মা বাবা, বড় ভাই বোনদের মধ্য থেকে চশমা ব্যবহার করে না এমন পাঁচজনকে বাছাই
 কর।
- বাছাইকরা একজনকে খবরের কাগজটি পড়তে দাও।
- ৩. তিনি খবরের কাগজটি চোখ থেকে যে অবস্থানে রেখে ভালোভাবে পড়তে স্বাচ্ছন্দ্যবোধ করে সে অবস্থানটি চি[ি]ত কর।
- ৪. এবার একটি সেন্টিমিটার স্কেল ব্যবহার করে চোখ থেকে খবরের কাগজের অবস্থান পরিমাপ কর। এটাই তার স্পস্ট দর্শনের ন্যুনতম দূরত্ব।
- এইভাবে পাঁচজন ব্যক্তিরই স্পষ্ট দর্শনের ন্যুনতম দূরত্ব পরিমাপ করে ছকে লিখ।
- ৬. ছক থেকে প্রত্যেকের স্পষ্ট দর্শনের ন্যূনতম দূরত্ব যাচাই (25cm এর কম বা বেশি হলে) করে প্রয়োজনীয় চশমা সুপারিশ করতে পার।
- ৭. তিনু তিনু ব্যক্তির আলাদা স্পষ্ট দর্শনের ন্যুনতম দূরত্ব হওয়ার কারণ আলোচনা কর।

পর্যবেক্ষণ ছক

ব্যক্তির নাম	আনুমানিক বয়স	স্পন্ট দর্শনের ন্যুনতম দূরত্ব	সুপারিশকৃত চশমা (প্রয়োজন হলে)

जन्नी ननी

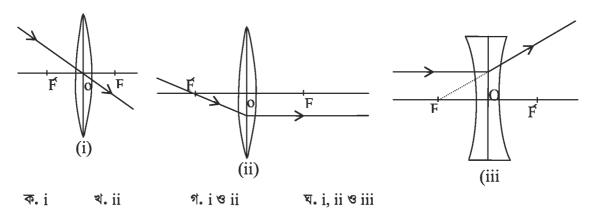
ক. বহুনির্বাচনী প্রশ্ন

সঠিক উন্তরে টিক $(\sqrt{})$ চিহ্ন দাও

- ১। ঘন মাধ্যমের ভিতরে রাখা কোনো বস্তুকে হালকা মাধ্যম থেকে দেখলে এর প্রতিবিম্ব কোথায় হবে?
 - ক) উপরের দিকে উঠে আসবে
- খ) নিচের দিকে সরে যাবে
- গ) একই জায়গায় থাকবে।
- ঘ) পাশে সরে যাবে

পাশের চিত্র থেকে ২ ও ৩ নং প্রশ্নের উত্তর দাও।

- ২। এখানে প্রতিসরণ কোণ কত?
 - ক) 0⁰


খ) 90⁰

গ) 180^{0}

- ঘ) 45⁰
- ৩। আপতন কোণটি যদি আরও বড় হয় তাহলে কী ঘটবে ?
 - ক) পূর্ণ অভ্যন্তরীণ প্রতিসরণ
- খ) পূর্ণ অভ্যন্তরীণ প্রতিফলন

গ) প্রতিসরণ

- ঘ) প্রতিফলন
- ৪। উত্তল লেন্সে প্রতিবিম্ব অঙ্কনের ক্ষেত্রে সচরাচর ব্যবহৃত রশ্মি চিত্র –

- ৫। লেন্সের ক্ষমতার একক কোনোটি ?
 - ক) ডায়াপ্টার

খ) ওয়াট

গ) অশ্ব ক্ষমতা

ঘ) কিলোওয়াট-ঘন্টা

খ. সৃদ্ধনশীল প্রশ্ন

- ১। দশম শ্রেণির ছাত্রী শিউলী শ্রেণি কক্ষে ব্ল্যাক বোর্ডের লেখা ভালভাবে দেখতে পায় না। ফলে ডাক্তারের সরনাপন্ন হলে ডাক্তার তাকে -2D ক্ষমতাসম্পন্ন লেন্স চশমা হিসাবে ব্যবহারের পরামর্শ দিলেন।
 - ক) লেন্স কাকে বলে?
 - খ) স্পর্শ না করে কীভাবে একটি লেন্স সনাক্ত করা যায়?
 - গ) শিউলীর চশমার ফোকাস দূরত্ব নির্ণয় কর।
 - ঘ) শিউলীকে ঋণাতাক (–) ক্ষমতার লেন্স ব্যবহারের পরামর্শ দেওয়ার যৌক্তিকতা লিখ।

দশম অধ্যার স্থির তড়িৎ STATIC ELECTRICITY

আমরা জানি প্রত্যেক পদার্থেই প্রোটন ও ইলেকট্রন থাকে। তুমি কি জান যে তোমার শরীরে 10^{28} টি এর চেয়েও বেশি প্রোটন একং প্রায় সমান সংখ্যক ইলেকট্রন আছে। এই ইলেকট্রন ও প্রোটনের একটি মৌলিক ধর্ম হচ্ছে আধান (Charge)। প্রোটনের আধানকে ধনাত্মক ও ইলেকট্রনের আধানকে খণাত্মক ধরা হয়। আহিত বস্তু পরস্পরের উপর বল প্রয়োগ করে — যা তড়িৎ বল নামে পরিচিত। তড়িৎ বল প্রকৃতির একটি মৌলিক ও পুরুত্বপূর্ণ কল। এই অধ্যায়ে আমরা দেখব কীতাবে কোনো বস্তুকে আহিত করা যায়। আমরা আরো দেখব কীতাবে আধানের অভিত্ত্ব বোঝা যায়, কীতাবে তাদের মধ্যকার বল হিসাব করতে হয়। এই অধ্যায়ে আমানের আলোচিত আধানপুলো একস্থানে স্থির থাকবে। এই জন্য আমরা এই অধ্যায়কে স্থির তড়িৎ হিসেবে আখ্যায়িত করেছি। আমরা সবশেষে এই স্থির আধানের ব্যবহার এবং এর থেকে কিছু বিপদ ও সেই বিপদ থেকে কীতাবে সাবধান থাকতে হবে তাও আলোচনা করব।]

এই অধ্যায় গাঠ শেষে আমরা –

- পরমাণু গঠনের ভিত্তিতে আধান সৃষ্টির মৌশিক কারণ ব্যাখ্যা করতে পারব।
- র্যাণ ও আবেশ প্রক্রিয়ায় আধান সৃষ্টি ব্যাখ্যা করতে পারব।
- তড়িৎবীক্ষণ যশেত্রর সাহায্যে আধান সনাক্তকরণ করতে পারব।
- ৪ কুশন্থের সূত্র ব্যবহার করে তড়িৎ বল পরিমাপ করতে পারব।
- ভড়িৎ ক্ষেত্র সৃষ্টির কারণ ব্যাখ্যা করতে পারব।
- তড়িৎ বলরেখার দিক তড়িৎ ক্ষেত্রের দিককে নির্দেশ করে ব্যাখ্যা করতে পারব।
- তড়িৎ বিভব ব্যাখ্যা করতে পারব।
- তড়িৎ শক্তি সংরক্ষণে ধারকের কার্যক্রম ব্যাখ্যা করতে পারব।
- স্থির ভড়িৎ ব্যবহার ব্যাখ্যা করতে পারব।
- ১০. স্থির তড়িৎ বিপদজ্জনক ঝুঁকি হতে রক্ষার কৌশল ব্যাখ্যা করতে পারব।

১০.১ আধান

Charge

এক শীতের সকালে সৌরভ তার প্লাস্টিকের চির্নীটি হাতে নিল চূল আচড়ানোর জন্য। কিন্তু চূল আঁচড়ানোর আগে সৌরভ চির্নীটিকে তার উলের পুলওভারের সাথে কিছুক্ষণ ঘষে নিল। এবার চূল আচড়াতে গেলে সে বিময়ের সাথে লক্ষ করল যে ঐ চির্নী দিয়ে চূল আঁচড়ানো যাচ্ছে না, চূলগুলো সব খাড়া হয়ে গেছে যেন পরস্পরকে বিকর্ষণ করে দূরে ঠেলে দিচ্ছে। সৌরভ এখন চির্নীটিকে টেবিলের কাছে আনতেই দেখতে পেল যে, টেবিলের উপর পড়ে থাকা টুকরো কাগজগুলোকে চির্নীটি আকর্ষণ করছে। সৌরভের মত এ রকম অভিজ্ঞতা হয়তো তোমাদের অনেকেরই হয়েছে। আমাদের দৈনন্দিন জীবনে আমরা দেখি যে আমাদের চারপাশের অনেক জিনিসই সৌরভের চির্নীর মত আচরণ করে।

করে দেখ : তোমার প্লাস্টিকের স্কেলটিকে তোমার শুকনো চুলের সাথে কিছুক্ষণ ঘবে কতগুলো কাগজের টুকরোর কাছে ধর । কী দেখতে পেলে?

আমরা দেখি যে, কোনো বস্তু বিশেষ অবস্থায় অন্য বস্তুকে আকর্ষণ করে বা তড়িৎগ্রস্থ বা আহিত হয় অর্থাৎ বস্তুতে তড়িতের উৎপত্তি হয়। এই তড়িৎ যেখানে উৎপন্ন হয় সেখানেই থাকে বলে একে স্থির তড়িৎ বলা হয়। এখন দেখা যাক, তড়িৎগ্রস্থ বা আহিত হওয়া বলতে আমরা কী বুঝি ?

আমরা জানি প্রত্যেক পদার্থ ক্ষ্দ্র ক্ষ্দ্র কণা ঘারা গঠিত। এদেরকে পরমাণু বলে। প্রত্যেক পদার্থের পরমাণু নিউক্লিয়াসের চারদিকে ঘূর্ণায়মান ইলেকট্রন ঘারা গঠিত। নিউক্লিয়াসের মধ্যে দুই ধরনের কণা থাকে—প্রোটন ও নিউট্রন। পদার্থ সৃষ্টিকারী মৌলিক কণাসমূহের (ইলেক্ট্রন ও প্রোটন) মৌলিক ও বৈশিষ্ট্যমূলক ধর্মই হচ্ছে আধান বা চার্জ। ইলেকট্রনের আধানকে ঋণাত্মক এবং প্রোটনের আধানকে ধনাত্মক ধরা হয়। নিউট্রন তড়িৎ নিরপেক্ষ অর্থাৎ এতে কোনো আধান নেই।একটি প্রোটনে আধানের পরিমাণ ইলেকট্রনের আধানের সমান। স্বাভাবিকভাবে একটি পরমাণুতে ইলেকট্রনের সংখ্যা প্রোটনের সংখ্যার সমান থাকে। ফলে একটা গোটা পরমাণুতে কোনো তড়িৎ ধর্ম প্রকাশ পায় না। বিভিন্ন পদার্থের পরমাণুতে প্রোটন ও ইলেকট্রনের সংখ্যা বিভিন্ন হয়।

কোনো পরমাণুতে যতক্ষণ পর্যন্ত ইলেকট্রন ও প্রোটনের সংখ্যা সমান থাকে ততক্ষণ পর্যন্ত তা নিস্তড়িৎ বা তড়িৎ নিরপেক্ষ থাকে। কিন্তু পরমাণুতে এদের সংখ্যা সমান না হলে পরমাণু তড়িৎগ্রস্থ হয় অর্থাৎ আহিত হয়। কোনো পরমাণুতে ইলেকট্রনের সংখ্যা কমে গেলে প্রোটনের আধিক্য দেখা দেয়। এ অবস্থাকে বলা হয় ধনাত্মক আধানে আহিত হওয়া। আবার এই বিচ্ছিন্ন ইলেকট্রন অপর কোনো পরমাণুর সাথে যুক্ত হলে সে পরমাণুতে প্রোটনের চেয়ে ইলেকট্রনের সংখ্যা বেড়ে যায়, ফলে ঋণাত্মক আধানে আহিত হয়। পরমাণুতে ইলেকট্রনের সংখ্যা স্বাভাবিকের চেয়ে কম বা বেশি হওয়াকে আহিত হওয়া বলে।

যে সকল পদার্থের মধ্য দিয়ে তড়িৎ তথা আধান সহজে চলাচল করতে পারে তাদেরকে পরিবাহক বা পরিবাহী বলে, যেমন ধাতব পদার্থ, মাটি, মানবদেহ প্রভৃতি। সাধারণত ধাতব পদার্থ তড়িৎ সুপরিবাহী হয়। তামা, রুপা, অ্যালুমিনিয়াম ইত্যাদি সুপরিবাহী। অপর পক্ষে যে সকল পদার্থের মধ্য দিয়ে তড়িৎ তথা আধান চলাচল করতে পারে না তাদেরকে অন্তরক বা অপরিবাহী বলে, যেমন কাঠ, কাগজ, কাচ ইত্যাদি।

১০.২ ঘর্ষণ দারা আহিতকরণ

Electrification by friction

পরীক্ষণ: একটি হালকা শোলার বলকে একটি সুতার সাহায্যে কোন স্ট্যান্ড বা হুক থেকে ঝুলিয়ে দাও। এখন একটি শুকনো সিঙ্কের কাপড়ের টুকরা দিয়ে একটি শুকনো কাচদন্ডের একপ্রান্ত ভালোভাবে ঘযো। কাচদন্ড ও সিঙ্কের কাপড়ের টুকরা সূর্যের কিরণে শুকিয়ে গরম করে নিলে ভালো হয়। এখন কাচদন্ডের ঘষা প্রান্তটি মুক্তভাবে ঝুলানো হালকা শোলার বলের কাছে আনো। কী দেখতে পেলে? কাঁচদন্ড শোলারবলকে আকর্ষণ করে।

भग**ं**षिकान

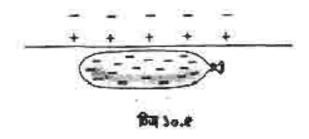
স্বান্তাবিক অকথার পদার্থের পরমাধুতে ইলেকট্রন ও প্রোটন সমপরিয়াগে থাকে। তবে প্রত্যেক পরমাপুরই প্রয়োজনের অভিনিক্ত ইলেকট্রনের প্রতি আসন্তি থাকে। ইলেকট্রনের প্রতি এই আসন্তি বিভিন্ন

বস্তুতে বিভিন্ন রকম। ভাই দুইটি বস্তুকে বর্ধন শ্বাসারের সংলের্দে জানা হর জখন যে বস্তুর ইলেবট্রন জাসন্তি বেশি সে বস্তু জগর বস্তুটি থেকে ইলেবট্রন সঞ্চাহ করে গুণাজ্বক আধানে আহিত হয়। একটি কাচদন্ডকে সিল্ক দ্বারা ঘবলে এরকম ঘটনা ঘটে (চিত্র ১০.১)। সিছের ইলেবট্রন আসন্তি কাচের চেরে বেশি বলে, এদের বর্ধন পরসারের সাথে ঘবা হয়, তর্থন কাচ থেকে ইলেবট্রন সিছে চলে যায়। এর কলে সিল্ক শ্বণাজ্বক আধানে এবং কাচদন্ত ধনাজ্বক জধানে আহিত হয়। এজন্য কাচদন্ত শোলাকাকে আকর্ষণ করে (চিত্র ১০.২)। আবার ফ্লানেলের কাগড়ের সাথে ইবোনাইট বা পলিখিন দন্ত ঘবলে, পলিখিন দন্ত স্থণাজ্বক আধানে আহিত এবং ফ্লানেলের কাগড় ধনাজ্বক আধানে আহিত হয়। কারণ, পলিখিনের ইলেবট্রন আসন্তি ফ্লানেশের চেয়ে বেশি বলে, পরস্থারের সাথে ঘর্বশের ফলে ফ্লানেশের কাগড় থেকে ইলেবট্রন পলিখিন দক্তে চলে আনে (চিত্র ১০.৩)।

১০.৬ ছড়িং ভাবেশ

Electric induction

আমরা দেখেছি যে, দুইটি কম্ভূর পারস্পরিক ঘর্ষণের কলে আধানের উদ্ভব হর। আরর আহিত কম্ভূকে অনাহিত বস্তুর সংসর্গে আমতে অনাহিত হয়। কিন্তু অনাহিত কম্ভূকে আহিত কম্ভূর সংস্পর্গে না এনে দুধু কাহাকাছি নিয়ে একেও এটি আহিত হয়। তড়িং আবেশের জন্য এরকম হয়।একটি আহিত কম্ভূর কাহে এনে স্পর্ণ না করে পুধুমাত্র এর উপস্থিতিতে কোনো অনাহিত কম্ভূকে আহিত করার পশ্বভিকে তড়িং আবেশ বলে। নিচের সহজ্ব পরীক্ষার সাহায়ে তড়িং আবেশ ব্যাধ্যা করা যায়।



16 : 30.8

পরীক্ষা : রাবারের হাতন বিশিষ্ট একটি শৃকনো কাচদভকে রেশম দিয়ে ভালো করে যথে এর এক প্রান্ত হাতে ধরে অন্য প্রান্ত একটি অনাহিত গরিবাহী দক্ত AB এর A প্রান্তের নিকটে আনলে গরিবাহীর মৃক্ত ইলেবট্রনগুলো কাচদক্রের ধনাত্মক আধান দারা আকৃষ্ট হয়ে A প্রান্তে সরে আসে (চিত্র ১০.৪ ক)। ফলে B প্রান্তে ইলেবট্রন বাটিডি সৃষ্টি হয়, অর্থাৎ B প্রান্ত ধনাত্মক আধানে আহিত হয় একং A প্রান্ত ধণাত্মক আধানমূক্ত হয়। আধান সংগ্রহক [একটি অপরিবাহী হাতদের প্রান্তে গাগানো কুলু ধাতব পাত বা কা] দিয়ে B প্রান্ত ধেকে কিছু আধান সংগ্রহ করে (চিত্র ১০.৪ খ) তড়িংকীক্ষণ যদেত্রের সাহাব্যে এর প্রকৃতি নির্দির করলে, উপরিক্তিক করেব্যের সভ্যতা প্রমাণিত হবে। এখানে নতুন কোনো আধান উৎপন্ন হয় না। আহিত কাচদক্রের উপস্থিতির কারণে সমগরিমাণ বিশরীত জাতীর আধান পৃথক হয়ে পরিবাহীর দুই প্রান্তে সরে গেছে মাত্র। যতক্ষণ কাচদগুটি AB পরিবাহীর কাছে থাকবে তভক্ষণ বিশরীত আধান এতাবে পৃথক হয়ে পরিবাহীর দুই প্রান্তে অবস্থান করবে। উপরের পরীক্ষার কাচদক্রের ধনাত্মক আধান যা AB

পরিস্কৃতিতে আবেশ সৃত্তি করণ ভাকে নাবেশী নাবাস কলে। আম AB পরিবার্তীতে বে আধানের সভায় হর ভাকে আবিউ লাধান কলে।

লালুসারিত কর্মনার্চ : একটি কুলুনো লেলুনকে তোমার লামার সাথে কর । এরপর এটিকে সরের লেলুরালের নারে একট্ থানি একে করে তেন্তে দাত। কি লেগের । কেলুনটি কেলুরালে স্থাটিকে স্থানে। লালুনারিত কর্মনার্চ : একটি প্রান্টিকের কন্তুকে স্থানার নালে কর । এরপর স্থানির কল থেকে পড়া একটি ক্ষিণ প্রতির ব্যায়ে কাছে বর । প্রতির ব্যায়া কন্তুর নিকে কেলে সালে।

ক্ষেত্ৰ সূত্ৰ স্থান্তৰ সাধান সেওৱালে সাংকণ সৃষ্টি কৰে। মেওৱালে সাধিউ বনাত্ৰক সাধান কণাত্ৰক সাধানবিশিউ কেনুমকে সাকৰ্ষণ করে ৱালে (চিন্ত ১০.৫)। একই ঘটনা ফটে গানির বারার ক্ষেত্রত (চিন্ত ১০.৬)।

১০.৪ জড়িংবীকণ কৰে

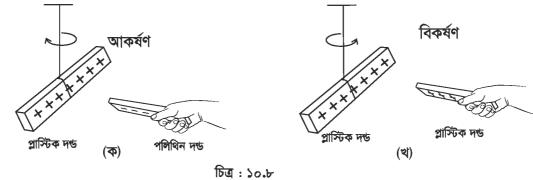
Klectroscope

পঠন । যে যদেশ্বর সাধায়ে কোনো কৃত্তে ক্ষানের কলিক ও প্রকৃতি নির্নির করা জন্ম ক্ষাকে কন্তিবীক্ষা করে করে। এই যদেশ একটি শিকা র ক্ষান্ত কোনো বাকা দক্ত দক্তি একটি বাকা চাকতি বা পোলক ক্ষিকানো ক্ষাকে (চিত্র ১০.৭)। সভার শিকের প্রায়েক সূথীটি ছালকা লোনায় পাত সংকৃত্ত বাকে। পাত সূথীটি লোনায় বদলে আপুমিনিয়াম বা ক্ষান্ত কোনো হালকা থাকুরাও বক্তে পাত্রে। পাতসহ সংখ্যা নিয়ের ক্ষণে অপত্রিবাহী পরার্থ নিয়ে তৈরি ছিলি C এর মধ্য দিয়ে একটি কাচ পাত্রের মধ্যে প্রবেশ করালো বাকে। যদ্মানি কচ পাত্রের ক্ষিত্রে থাকার বায়ু প্রবাহ ক্ষাক্ষ ক্ষাক্রের পাত্রের স্বায়ন্ত্র বা ক্ষান্ত ক্ষাক্ষ ক্ষ

অন্তিবনীকাৰ কাজকে আহিতকাৰ । একটি কচনাচকে প্ৰেলান নিয়ে বৰলে বক্তনাচ বনাজক আধানের উত্তৰ হয়। ঐ আহিত কচনাচকে অন্তিবনীকাণের চাকতি বা পোলকের নাত্রে লাল করালে নাত হতে বানিকটা আবাল চাকতিতে চলে বান। এই বাবাল সুলবিবাধী থাতব দক্তের মধ্য দিয়ে সোলার পাতবয়ে পৌতে। ফলে সোলার পাত সুইটি একই আজীয় আবাল পোরে পালসাচকে বিকর্তন করে করে বরু সালার বেকে সুন্তে সার বায়। এই অবস্থার কচনাচ সারিত্রে নিলে যদি পাতহজের মধ্যকতী কাঁক না কমে, ভার্যে কাবাতি কনাজক আবাদে আহিত ক্রেছে কল সিক্ষেত্রত সেওৱা যায়।কাব্যকে ক্ষণাজক আবাদে আহিত ক্রেছে কল সিক্ষেত্রত সেওৱা যায়।কাব্যকে ক্ষণাজক আবাদে আহিত ক্রেছে কল সিক্ষেত্রত সেওৱা যায়।কাব্যকে ক্ষণাজক আবাদে আহিত ক্রেছে হলে সিক্ষেত্রত সার্বালয় হলে ক্ষণাজক আবাদে পারেত ক্রেছে প্রতিবায়ে চাকতি স্পর্ণ করা হয়। এর ফলে অর্থণাত দুইটি বাণাজক আবাদ পোরে

Bu : 30.9

পালের থেকে দুয়ে সয়ে কাঁক হয়ে বাবে এবং সেই স্বক্ষায়ই শাক্ষে। আবাদ বত বেশি হবে, বাতব পাতপুলোও ভত বেশি কাঁক হয়ে যাবে।

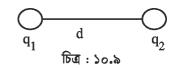

আধানের উপস্থিতি নির্ণয় : কোনো বস্তুতে আধানের অস্তিত্ব অর্থাৎ কোনো বস্তুতে আধান আছে কি না নির্ণয়ের জন্য বস্তুটিকে একটি অনাহিত তড়িৎবীক্ষণ যন্দেত্রর চাকতির কাছে আনতে হবে। এতে যদি পাত দুইটি পরস্পর থেকে দূরে সরে যায়, তাহলে বুঝতে হবে বস্তুটিতে আধানের অস্তিত্ব আছে। কিন্তু যদি পাত দুইটি পরস্পর থেকে দূরে সরে না যায়, তাহলে বুঝতে হবে বস্তুটিতে আধান নেই।

আধানের প্রকৃতি নির্ণয় : কোনো তড়িৎগ্রাস্ত বস্তুতে কী ধরনের আধান আছে তা জানতে হলে তড়িৎবীক্ষণ যন্ত্রটিকে প্রথমে ধনাত্মক কিংবা ঋণাত্মক আধানে আহিত করতে হবে। ধরা যাক, যন্ত্রটিকে ধনাত্মক আধানে আহিত করা হলো। ঐ অবস্থায় পাতদ্বয়ে ধনাত্মক আধান থাকায় এরা ফাঁক হয়ে যাবে। এখন পরীক্ষণীয় বস্তুটিকে তড়িৎবীক্ষণ যন্ত্রের চাকতির সংস্পর্শে আনলে যদি পাত দুটির ফাঁক কমে যায়, তাহলে বুঝতে হবে ঐ বস্তুটি ঋণাত্মক আধানে আহিত। পক্ষান্তরে পরীক্ষণীয় বস্তুটিকে চাকতির সংস্পর্শে আনলে যদি ফাঁক বেড়ে যায়, তাহলে বুঝতে হবে বস্তুটি ধনাত্মক আধানে আহিত।

১০.৫ তড়িৎ বল

Electric force

বলের প্রকৃতি : একটি ধনাতাক আধানে আহিত প্লাস্টিক দণ্ডকে নাইলনের সুতা দিয়ে ঝুলিয়ে দেওয়া হলো (চিত্র ১০.৮ ক)। এবার একটি ঋণাতাক আধানে আহিত পলিথিনের দণ্ডকে এর নিকটে আনা হলো। কী দেখা যাবে ? প্লাস্টিকের দণ্ডটি পলিথিনের দণ্ডের দিকে ঘুরে যাবে। এ খেকে বুঝা যায়, দুইটি বিপরীত আধানে আহিত বস্তু পরস্পারকে আকর্ষণ করে।



এবার একটি ধনাত্মক আধানে আহিত প্লাস্টিক দন্ডকে ঝুলন্ত ধনাত্মক আধানে আহিত প্লাস্টিকের দন্ডের দিকে নিয়ে এলে (চিত্র ১০.৮ খ) কী দেখা যাবে? ঝুলন্ত দন্ডটি দুত দূরে সরে যাবে। অর্থাৎ সমজাতীয় আধান পরস্পরকে বিকর্ষণ করে।

কুলন্দের সূত্র : আমরা দেখলাম, দুইটি বিপরীত জাতীয় আধান পরস্পরকে আকর্ষণ করে, দুইটি সমজাতীয় আধান পরস্পরকে বিকর্ষণ করে। দুইটি আধানের মধ্যবর্তী এই আকর্ষণ বা বিকর্ষণের বলের মান নির্ভর করে,

- আধান দুইটির পরিমাণের উপর
- ২. আধান দুইটির মধ্যবতী দূরত্বের উপর
- আধান দুইটি যে মাধ্যমে অবস্থিত তার প্রকৃতির উপর।

দুইটি আধানের মধ্যবতী আকর্ষণ বা বিকর্ষণ বল সম্পর্কে বিজ্ঞানী কুলম্ব একটি সূত্র বিবৃত করেন। একে কুলম্বের সূত্র বলে।

সূত্র : নির্দিষ্ট মাধ্যমে দুইটি কিন্দু আধানের মধ্যে ক্রিয়াশীল আকর্ষণ বা বিকর্ষণ বলের

মান আধানদ্বয়ের গুণফলের সমানুপাতিক, মধ্যবতী দূরত্বের বর্গের ব্যস্তানুপাতিক এবং এই বল এদের সংযোজক সরলরেখা বরাবর ক্রিয়া করে।

ধরা যাক, দুইটি আধানের পরিমাণ যথাক্রমে $q_1 \otimes q_2$ এবং এদের মধ্যবর্তী দুরত্ব d (চিত্র ১০.৯)। এদের মধ্যবর্তী ক্রিয়াশীল আকর্ষণ বা বিকর্ষণ কল F হলে, কুলম্বের সূত্রানুসারে,

$$F \propto \frac{q_1q_2}{d^2}$$

$$\text{বা, } F = C\frac{q_1q_2}{d^2} \tag{10.1}$$

এখানে C একটি সমানুপাতিক ধ্রক। শূন্যস্থানের জন্য এর মান $9{ imes}10^9~{
m Nm}^2~{
m C}^{-2}$ । একে জনেক সময় কুলন্দের ধ্রক বলা হয়।

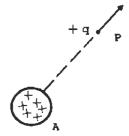
ভাষানের একক: ভাষানের একক হচ্ছে কূলন্ব (C)। এটি একটি লব্ধ একক। জ্যম্পিয়ারের সাহায্যে এর সংজ্ঞা দেওয়া হয়।

কোনো পরিবাহীর মধ্য দিয়ে এক জ্যাম্পিয়ার $(1\ A)$ প্রবাহ এক সেকেন্ড $(1\ s)$ ধরে চললে এর যেকোনো প্রস্থাছেদে দিয়ে যে পরিমাণ স্বাধান প্রবাহিত হয় তাকে এক কুলন্দ্র $(1\ C)$ বলে।

গাণিতিক উদাহরণ ১০.১: একটি $20~\mathrm{C}$ এর আহিত কম্ভূকে শূন্যম্পানে অপর একটি $50~\mathrm{C}$ এর আহিত কম্ভূ থেকে $2~\mathrm{m}$ দূরে রাখা হলো। এদের মধ্যবতী বলের মান নির্নয় কর।

আমরা জ্বানি,

$$F=Crac{q_1q_2}{d^2}$$
 এখানে, প্রথম আধান, $q_1=20~\mathrm{C}$ থিতীয় আধান, $q_2=50~\mathrm{C}$ থিতীয় আধান, $q_2=50~\mathrm{C}$ দূরত্ব, $d=2~\mathrm{m}$ কগ, $F=?$


১০.৬ তড়িৎ ক্ষেত্র

Electric field

ধরা যাক A একটি ধনাত্মক আধানের কন্তু। এখন P কিন্দুতে (চিত্র ১০.১০) যদি একটি আধান +q রাখা হয় তাহলে A কন্তুর আধানের জন্য +q আধানটি একটি কন্ম অনুভব করবে। আমরা বলি P কিন্দুতে একটি তড়িৎ ক্ষেত্র বিরাজ করছে যার উৎস হচ্ছে আহিত কন্তু A। অর্থাৎ, একটি আহিত কন্তুর নিকটে অন্য একটি আহিত কন্তু আনলে সেটি আকর্ষণ বা বিকর্ষণ +q

বল অনুভব করে। আহিত কণ্ডুর চারদিকে যে অঞ্চল জুড়ে এই প্রভাব বিদ্যমান থাকে সেই অঞ্চলকেই এই কণ্ডুটির ভড়িৎ ক্ষেত্র বলে।

ভড়িৎ ভীব্রভা: কুলন্দের সূত্র ঝেকে দেখা যায় যে, P কিপুটি A কস্তুটির যত নিকটবর্তী হয় ঐ কিপুতে তড়িৎ ক্ষেত্রের সকলতাও তত বৃদ্ধি পায়। তড়িৎ ক্ষেত্রের সকলতাকে ভীব্রতা বলা হয় । তড়িৎ ক্ষেত্রের কোনো কিপুতে একটি একক ধনাত্রক আধান স্থাপন ক্রলে সেটি যে কা অনুভব করে তাকে ঐ কিপুর তড়িৎ ভীব্রতা বলে।

०८.०८ : क्रजी

যদি P বিন্দুতে স্থাপিত আধানটি F বল লাভ করে তাহলে P বিন্দুর তড়িৎ তীব্রতা,

$$E = \frac{F}{a} \tag{10.2}$$

ভঞ্জিৎ উত্রিতা একটি তেউর রাশি এবং এর দিক হচ্ছে স্বঞ্জিৎ ক্ষেত্রে ন্যাপিত ধনাত্মক নাধানের উপর ব্রিয়াশীল বচেরা দিকে। ভড়িৎ জীব্ৰভাৱ একক হচ্ছে নিউটন / কুলম্ব (N C -1)।

গাৰিতিক উদাহরণ ১০.২। কোনো ভড়িৎ ক্ষেত্রে 5 C এর একটি আহিত বস্তু স্থাপন করলে বদি লেটি 200 N কা শান্ত করে ভবে ঐ বিন্দুতে ভড়িং ক্ষেত্রের জীব্রভার মান নির্ণর কর।

चामबा जानि,

$$E=rac{F}{q}$$
 প্রধানে, প্রধানে, প্রধানে, প্রধানে, প্রধানে, $q=5~\mathrm{C}$ কন, $F=200~\mathrm{N}$ প্রকৃতি সূত্র , $E=7$ প্রকৃতি সূত্র , $E=7$

5: 40 N C-1

ভড়িৎ ব্দরেশা : ভড়িৎ ক্ষেত্র সম্পর্কে ধারণা পাওরার জন্য মাইকেল ক্যারান্তে ভড়িৎ বলরেশার অবভারণা করেন। কোনো ডড়িৎ ক্ষেত্রে একটি ধনাত্মক জাধান স্থাপন করলে এটি বল লাভ করবে। যদি জাধানটি মৃক্ত হয় ভবে সেটি এই বল লান্ডের ফলে স্থির না থেকে একটি নির্দিন্ট পথে চলবে। ডড়িৎ ক্ষেত্রে একটি মুক্ত ধনাত্মক আধান স্থাপন করলে এটি যে পথে শরিক্রমণ করে তাকে তড়িং কারেখা বলে। কারেখার বাস্তব কোনো লস্তিত্ব নেই। এই রেখাগুলো কার্যনিক। তড়িং কারেখা ছড়িং কেরের কোনো কিদুভে ভড়িং ভীব্রভার পরিমাণ ও দিক ব্যাখ্যা করার জন্য ব্যবহার করা হয়।ভড়িং কেরের করেখাপুলো এমন হয় যে, ভড়িং কেরের কোনো কিদুতে করেখার সাথে অভিন্ত স্পর্শক ঐ কিদুতে ভড়িং উরুভার দিক নির্দেশ করে। কারেখার সাথে দম্বভাবে অবস্থিত একক ক্ষেত্রফলের মধ্য দিরে অভিব্রাস্ত কারেখার সংখ্যা উব্রিভার সমানৃপাতিক। কোনো ভড়িৎ ক্ষেত্রের ক্ষরেধার চিত্রে কারেধার মধ্যবর্তী ফাঁক ভড়িৎ তীব্রভার মান নির্দেশ করে। ভড়িৎ क्लाक य जब बनाकात कारतबागुरना कार्यकाहि क्वान्यक, क्वीर चमनद्विविके राज्यारम E अत मान खिन, बात य जब এলাকার ক্লব্রেথাপুলো দূরে দূরে অবস্থিত সে সব স্থানে E এর মান ছেটি বা কম হয়।

আহিত কম্ভূর বিভিন্ন অকথানের জন্য ভড়িৎ ক্যেরের কারেখার প্রকৃতি ভিন্ন হর। নিচে করেকটি ভড়িৎ ক্যেরের ক্লরেবা কর্না করা হলো। আলোচনার সুবিধার্থে পরিবাহীগুলোকে গোলাকার ধরা হয়েছে।

 একটি পৃথক ধনাম্বক আধানের জন্য কারেখার প্রকৃতি ১০.১১ (ক) চিত্রে দেখালো হলো। একেত্রে কারেখাপুলো পরিবাহীর পৃষ্ঠ থেকে দল্ম বরাবর সুবমভাবে বের হয়েছে। কন্তৃটির আধানের পরিমাশ বাড়লে বলরেধার সন্ব্যাও বাদ্ধবে।

- ২. দুইটি সমান ও বিগরীত জাতীয় বাধান বারা সৃষ্ট ভড়িৎ ক্ষেত্রের বদরেধা ১০.১১ (খ) চিত্রে দেখালো হলো। এক্ষেত্রে কারেবার্গুলা ধনাত্মক ভাষান থেকে বের হয়ে ঋণাত্মক ভাষানে श्रदेश करते।
- ৩. সমান মানের দুইটি ধনাতাক আধান গাণাপাশি স্থাপন করলে এদের সৃষ্ট ভড়িৎ ক্ষেত্রের বলরেখা ১০.১১ (র্গ) চিত্রে দেখানো হলো। এক্ষেত্রে কারেখাপুলো পরস্পর থেকে দূরে সরে যাবে, কলে দুই ভাষানের মাঝখানে কোনো ক্রেরেখা থাকে দা। চিত্ৰে এই স্থানকে X চিহ্ন দিয়ে দেখানো হলো। এই স্থানে কোনো

আধান স্থাপন করলে সেটি কোনো বল লাভ করবে না। এই বিন্দুকে নিরপেক্ষ বিন্দু বলা হয়।

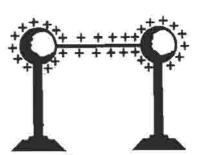
৪. দুইটি অসমান ধনাত্মক আধানের জন্য সৃষ্ট ভড়িৎ ক্ষেত্রের ক্লরেখা ১০.১১ (খ) চিত্রে দেখানো হলো। এক্ষেত্রে নিরপেক্ষ কিদু N ক্ষুদ্রভর আধানের নিকটবর্তী হবে।

১০.৭ ভড়িৎ বিভব

Electric potential

তড়িৎ ক্ষেত্রের যেমন তীব্রতা থাকে, তেমনি তড়িৎ ক্ষেত্রের বিতবও থাকে। বিতব ঘারা নির্ধারিত হবে তড়িৎ ক্ষেত্রে একটি আধান কোনো দিকে গতিশীল হবে বা দুইটি পরিবাহী সংযুক্ত করলে কোন পরিবাহী থেকে কোন পরিবাহীতে আধান প্রবাহিত হবে। তড়িৎ ক্ষেত্র সৃষ্টিকারী আহিত বস্তৃটির আধান ধনাত্মক হলে একটি ধনাত্মক আধানকে বস্তৃর দিকে আনতে বিকর্ষণ বলের বির্দেধ কাজ করতে হয়। সূতরাৎ, অসীম থেকে একটি একক ধনাত্মক আধানকে বস্তৃর যত নিকটবর্তী কোনো কিদ্যুতে আনতে হবে তত বেশি কাজ করতে হবে। তাই ধনাত্মকভাবে আহিত একটি বস্তৃর তড়িৎ ক্ষেত্রের মধ্যে একটি কিদ্যু বস্তৃটির যত নিকটে হবে তার বিভবও তত বেশি হবে।ধনাত্মকভাবে আহিত একটি বস্তৃর তড়িৎ ক্ষেত্রে স্থাপিত একটি ধনাত্মক আধান যদি মুক্তভাবে চলতে পারে, তবে সেটি ধনাত্মকভাবে আহিত বস্তৃ থেকে দূরে সরে যাবে। সূতরাং কলা চলে ধনাত্মক আধান উচ্চ বিভব থেকে নিমু বিভবের দিকে চলে। অগরপক্ষে ঋণাত্মক আধান ধনাত্মক ভাবে আহিত বস্তৃর দিকে চলে। সূতরাং, ঋণাত্মক আধান নিমুবিভব থেকে উচ্চ বিভবের দিকে চলে। ক্ষেত্র সৃক্টিকারী আহিত বস্তৃর দিকে চলে। সূতরাং, ঋণাত্মক আধান নিমুবিভব থেকে উচ্চ বিভবের দিকে তলে। ক্ষেত্র সৃক্টিকারী আহিত বস্তৃর দিকে চলে। মৃত্রাং, ঋণাত্মক অধান নিমুবিভব থেকে উচ্চ বিভবের দিকে আনতে আকর্ষণ বন্ধ ঘারা কাজ সম্পন্ন হবে। ঋণাত্মকভাবে আহিত বস্ত্র তড়িৎ ক্ষেত্রে অসীম থেকে ধনাত্মক আধান কস্তুর দিকে আনতে নিজেই কাজ করে। কলে আধানটি শক্তি হারায় এবং তড়িৎ ক্ষেত্রের কোনো কিদ্যুর বিভবকে ঋণাত্মক ধরা হয়।

বিভবের পরিমাপ: অসীম দূরত্ব থেকে প্রতি একক ধনাজ্যক আধানকে তড়িৎ ক্ষেত্রের কোনো কিদুতে আনতে যে পরিমান কাছ সম্পন্ন হয় তাকে ঐ কিদুর তড়িৎ বিভব বলে। আবার, অসীম থেকে প্রতি একক ধনাজ্যক আধানকে পরিবাহীর খুব নিকটে আনতে তড়িৎ বল দ্বারা বা তড়িৎ বলের বিরুদ্ধে যে পরিমাণ কাছ সম্পন্ন হয়, তাকে ঐ পরিবাহীর বিভব বলে।

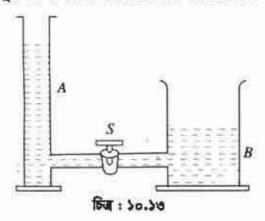

অসীম থেকে ক্ষুদ্র আধান q কে তড়িৎ ক্ষেত্রের কোনো বিন্দুতে বা পরিবাহীর খুব নিকটে আনতে যদি সম্পন্ন কান্ধের পরিমাণ W হয়, তবে ঐ বিন্দুর বা ঐ পরিবাহীর বিভব V হবে $V=\dfrac{W}{a}$ (10.3)

দুইটি আহিত পরিবাহীকে তড়িৎগতভাবে যুক্ত করঙ্গে কোন দিক দিয়ে আধান প্রবাহিত হবে তড়িৎ বিভব দ্বারা তা নির্ধারিত হয়।

দূইটি আধানযুক্ত ধাতব গোলককে একটি পরিবাহী তার দারা যুক্ত করলে (চিত্র ১০.১২) নিচের বেকোনো একটা ঘটনা ঘটতে পারে।

- বাম গোলক থেকে কিছু আধান ডান গোলকে যেতে পারে।
- ডান গোলক থেকে কিছু আধান বাম গোলকে যেতে পারে।
- অধান ষেমন ছিল তেমনই থাকতে পারে।

আধান কোন গোলক থেকে কোন গোলকে যাবে তা কিশ্ছু গোলকংয়ের আধানের পরিমাণের উপর নির্ভর করে না। এটি নির্ভর করে যে বিষয়টির উপর তাকে তড়িৎ বিভব কলা হয়। যে গোলকের বিভব বেশি তা থেকে কম বিভবের গোলকে ধনাজ্মক আধান প্রবাহিত হবে। দুইটি গোলকের বিভব সমান না হওয়া পর্যশ্ত আধানের এই প্রবাহ চলবে।



চিত্র : ১০.১২

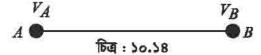
সূতরাং, বিশুব হচ্ছে আহিত পরিবাহীর ভড়িং অবস্থা যা নির্ধারণ করে ঐ পরিবাহীটি অন্যকোনো পরিবাহীর সাথে ভড়িংগভভাবে ফুক্ত করলে আযান দেবে না নেবে।

ভাগমারা ও ভরদের মৃক্তভের সাথে বিভবের সাদৃশ্য: তাশবিজ্ঞান ও উদস্থিতিবিদ্যার বধারুমে তাগমারা ও তরদের মৃক্ততন যে ভ্রিকা গালন করে থাকে। আমরা আনি, দুইটি বস্তুকে তাগীরতাবে সংস্কৃত্ত করলে তাদের মধ্যে তাগের আদান প্রদান হতে গারে। তাগের প্রবাহ বস্তুর ভর তথা তাগের গরিমাণের উপর নির্ভর করে না —তাগের প্রবাহ নির্ভর করে তাগমারার উপর। অভ্যন্ত উক্তক্ত একটি বস্তুকে তার চেরে অনেকর্গুণ তারী কিন্তু কম ভাগমারা বিশিক্ত লগর বস্তুর সাথে সংস্কৃত্ত করলে তাগ ছেটি বস্তু থেকে বড় কন্তুতে প্রবাহিত হবে, বলিও বড় কন্তুর তাগের গরিমাণে হেটি বস্তুর তাগের গরিমাণ হেটি বস্তুর মধ্যক্ষ তাগের গরিমাণের চেরে অনেক বেশি।

धकरें चन्त्रियक छल ज्यंतिक तृरेषि शांत A ७ B धकषि नन स्ता म्लेन-कर्क S ध्रत्र प्राथाय युक्त चार्य (वित्र ১०.১७)। मेरेन-कर्क क्या करत A ७ B रह शांनि वाना दला यात A ७ B छछ। नरन शांनित्र केंक्रका न्यान दहा। B नरनत बान A नरनत वार्य करत करत करत वर्ष वर्षत्र केंक्रका श्रीन वर्ष केंक्रका श्रीन श्री केंक्रका श्रीन श्री केंक्रका श्रीन श्री केंक्रका श्रीन श्री केंक्रका वर्षा वर्ष करत करा चर्म वर्ष श्रीन श्री

পুনরায় স্টেপ—কর্ক কল্ম করে A নলে সামান্য পরিমাণ পানি ঢালা হয় ছবে A তে পানির পরিমাণ B এর চেয়ে কমই থাকরে কিন্দু এর উচ্চভা লল বৃদ্ধি পাবে। এরপর স্টেপ—কর্ক খুলে দেখা যার যে A থেকে পানি B তে প্রবাহিত হয় একং পুনরায় A ও B এর পানির স্কল্পের উচ্চভা সমান হয়। এ থেকে বুবা যায়, পানির প্রবাহ অর্থাৎ আদানপ্রদান পানির পরিমাণের উপর নির্ভর করে না উচ্চভার উপর নির্ভর করে।

ধরা যাক, দুইটি পরিবাহী ধনাজ্যকভাবে আহিত। প্রথম পরিবাহীর আধানের পরিমাণ বিতীর পরিবাহীর আধানের চেরে বেলি, কিল্ছু প্রথমটির বিতব বিতীরটির চেরে কম। এখন পরিবাহী দুইটিকে একটি পরিবাহী তার দিয়ে সংকৃত্ধ করলে বিতীয় পরিবাহী থেকে প্রথম পরিবাহীতে ধনাজ্যক আধান প্রবাহিত হবে। আধানের পরিমাণ প্রথম পরিবাহীতে বেলি হত্যা সংস্তৃত্ব কম হত্যায় এটি আধান প্রহণ করে। আধানের প্রবাহের কলে বর্থন পরিবাহী দুইটির বিতব সমান হবে তর্থন আধানের প্রবাহ কল্ম হরে যাবে।


সূতরাং, বলা যায়, ডাপবিজ্ঞানে তাপমাত্রার ভূমিকা, উদস্পিতিবিদ্যায় তরগের মৃক্তডেরে ভূমিকা আর স্পির ভঞ্জিবিদ্যার বিভবের ভূমিকা একই।

পৃথিৱী বা ভূমির বিভব পূন্য : পৃথিবী একটি তড়িং পরিবাহী। কোনো লাহিত কস্ভূকে পৃথিবীর সাথে মৃদ্ধ করলে কস্ভূটি নিস্তভিত হয়। থনাজকভাবে আহিত কস্ভূকে ভূসংযুক্ত করলে পৃথিবী থেকে ইলেকট্রন এনে কস্ভূকে নিস্তভিত করে। আর ঋণাজ্যকভাবে আহিত কস্ভূকে পৃথিবীর সাবে সংকৃষ্ধ করলে কস্ভূ থেকে ইলেকট্রন ভূমিতে প্রবাহিত হয়, ফলে কস্ভূটি নিস্তভিত হয়। পৃথিবী এত বিরাট যে, এতে আখান খোগ–বিরোপ করলে এর বিভবের পরিবর্তন হয় না। বেমন, সমৃদ্র থেকে পানি ভূলে নিলে বা সমৃদ্রে গানি ঢালা হলে এর পানি ভলের কোনো গার্থক্য হয় না। পৃথিবী বিভিন্ন কস্তু থেকে প্রতিনিয়ত আখান গ্রহণ করে আবার সাবে সাবে অন্য কস্তুকে ভাষান সরকাহত করে, কলে পৃথিবীকে আখানহীন মনে করা হয়। কোনো স্থানের উচ্চতা নির্ণরের সময় সমৃদ্রের উপরিভলের উচ্চতাকে বেমন পূন্য ধরা হয় ভেমনি বিভব নির্ণরের সময় পৃথিবীর বিভবকেও পূন্য ধরা হয়।

শূন্য, ধনাজ্বক ও ঋণাজ্বক বিতব : কোনো আধানহীন পরিবাহীর বিভবকে শূন্য ধরা হয়। কোনো আহিত পরিবাহীকে পৃথিবীর সাথে সংযুক্ত করলে তার বিভবও শূন্য হয়। কেননা, সংযুক্ত অবস্থায় পৃথিবী ও পরিবাহী একত্রে একটি পরিবাহীতে পরিণত হয়। ধনাজ্বক আধানে আহিত পরিবাহীর বিভব ধনাজ্বক আর ঋণাজ্বক আধানে আহিত পরিবাহীর বিভব ঋণাজ্বক।

বিভবের একক ভোল্ট : অসীম থেকে প্রতি কুশম্ব (1C) ধনাত্মক আধানকে তড়িৎ ক্ষেত্রের কোনো কিপুতে আনতে যদি এক জুল (1J) কাজ সম্পন্ন হয়, তবে ঐ কিপুর বিভবকে এক ভোল্ট (1V) বলে।

ভড়িৎ ক্ষেত্রের কোনো কিপুর বিভব 20 V বগতে বুঝায় অসীম থেকে প্রতি কুগন্দ ধনাত্মক আধানকে ভড়িৎ ক্ষেত্রের ঐ কিপুতে আনতে 20 J কাজ সম্পন্ন হয়।

কাচ্ছের পরিমাণ V_A এবং B বিন্দুতে জানতে কাচ্ছের পরিমাণ V_B । অতএব প্রতি একক ধনাত্মক জাধানকে B বিন্দু থেকে A বিন্দুতে জানতে কাচ্ছের পরিমাণ V_A-V_B জর্ধাৎ এই দুই বিন্দুর বিভব পার্থক্য।

প্রতি একক ধনাত্মক আধানকে ভড়িৎ ক্ষেত্রের এক কিন্দু থেকে অন্য কিন্দুতে স্থানাম্তর করতে সম্পন্ন কাজের পরিমাণকে এই দুই কিন্দুর বিভব পার্থক্য বলে। বিভব পাথক্যের একক অবশ্যই ভোন্ট।

১০.৮ ভড়িৎ ধারক

Electric capacitor

তড়িৎ আধানরূপে শক্তি সঞ্চয় করার সামর্থ্যকে ধারকত্ব বলা হয়। ধারকত্ব বজায় রাখার জন্য উদ্ধাবিত যাশিত্রক

কৌশলই ধারক। কোনো উৎস থেকে যেমন, তড়িৎ কোষ থেকে ধারক শক্তি সঞ্চয় করে তা পুনরায় ব্যবহার করা হয়। যেকোনো আকৃতির দুইটি পরিবাহীর মধ্যবতী স্থানে কোনো অশতরক পদার্থ যেমন— বায়ু, কাচ, প্লাস্টিক ইত্যাদি স্থাপন করে ধারক তৈরি করা হয়। সূতরাৎ, কাছাকাছি স্থাপিত দুইটি পরিবাহীর মধ্যবতী স্থানে অশতরক পদার্থ রেখে তড়িৎ আধানর্পে শক্তি সঞ্চয় করে রাখার যাশিত্রক কৌশলকেই ধারক বলে।

একটি সরল ধারক তৈরি করা হয় দুইটি অশ্তরিত ধাতবপাতকে পরস্পর সমাশ্তরালভাবে রেখে। যখন একটি ব্যাটারিকে এর

ठिख : ১०.১৫

দুইটি পাতের সাথে সংযুক্ত করা হয় (চিত্র ১০.১৫), তখন ব্যাটারির ঋণাত্মক দন্ড থেকে ইলেকট্রন একটি পাতে প্রবাহিত হয় এবং এটি ঋণাত্মক আধানে আহিত হয়। ধারকের অন্য পাত থেকে ইলেকট্রন ব্যাটারির ধনাত্মক দন্ডে প্রবাহিত হয়, ফলে ঐ পাত ধনাত্মকভাবে আহিত হয়। পাতগুলোতে কত আধান জমা হবে তা ব্যাটারির ভোল্টেজের উপর নির্ভর করে।

ধারক রেডিও, টেলিভিশন, রেকর্ড প্রেয়ার এবং আন্যান্য ইলেকট্রনিক যশ্বপাতি সম্বাদিত বর্তনীতে ব্যাপকভাবে ব্যবহৃত হয়।

১০.৯ স্বির ভড়িতের ব্যবহার ও বিগদ

Uses and dangers of static electricity

১। স্পির কৈন্যুতিক রং ক্রে: গাড়ি, সাইকেল আলমারি বা অন্যান্য জিনিস রং করার জন্য ইদানিং রং এর ক্রে ব্যবহার করা হয়। এটি করা হয় স্পির তড়িৎ ব্যবহার করে। ক্রে গান এমনভাবে তৈরি করা হয় বে এটি রং এর অভি ক্রুল্র করে। ক্রে গান এমনভাবে তৈরি করে। রং ক্রে গানের সূচালো প্রাশ্তটি একটি স্পির তড়িৎ জেলারেটর এর এক প্রাশ্তের সাথে সংকৃত্ত করা হয়। জেলারেটরের অগর প্রাশতটি যে ধাতব পাতটি রং করতে হবে তার সাথে সংকৃত্ত করা হয় যা অবশ্যই ত্সব্যুক্ত থাকে। একটি গাড়ি রং করার কেরে ক্রে গোন থেকে নির্গত আহিত ক্যুল ক্যুল ক্রা গাড়ির বাইরের কাঠামো হারা আকৃষ্ট হয়।

চিত্র: ১০.১৬

ফলে গাড়ির বহিরাবরণের উপর রং এর একটি সুষম আস্তরণ পড়ে। এছাড়াও এই ক্ষুদ্র কণাপুলো তড়িৎ ক্ষেত্রের কারেথা বরাবর চলে কাঠামোর অপ্রকাশ্য স্থানে গৌছে সেখানেও রং করে।

২। ইক্সজেট প্রিন্টার: এটি হচ্ছে স্বচেয়ে সাধারণ ধরনের প্রিন্টার বা কম্পিউটারের সাথে সংযোগ দেওয়া থাকে। একটি ইক্সগান ভার স্চালো মুখ দিয়ে অভি ক্ষুদ্র কুদ্র কালির কণা নিক্ষেপ করে। এই ক্ষুদ্র কণাপুলো ধনাজ্বক (+) ভাবে আহিত। এই কালির কণাপুলো দুইটি পাতের মধ্যক্ষল দিয়ে চলে (চিত্র ১০.১৭)। এই ধনাতাক কালির

কণাগুলোকে ধনান্দ্রক পাত বিকর্ষণ করে এবং এগুলো ঋণান্দ্রক পাতে আকৃষ্ট হয়।

একটি কম্পিউটার পাতগুলোর ভোন্টেছ এমনভাবে নিয়শত্রণ করে বে পাতপুলো কথনো ধনাত্রক, কথনো খণাত্রক আধানে আহিত হয় এবং কালির কণাপুলো বিক্লিন্ড হয়ে চলমান কাপছের উপর বিভিন্ন স্থানে পড়ে এবং প্রয়োজনমত অকর বা ছবির আকৃতি ছাপে। রঙিন ছাপার জন্য চার রকমের রঙিন কালি বাবহার করা হয়।

हिता: ১०.১९

ত। ফটোব্দপিয়ায়: আজকাল ফটোব্দপিয়ায় বা ফটোকিল মেশিন খুবই প্রয়োজনীয় এবং জনপ্রিয় একটি বদরা। শিক্ষা প্রতিষ্ঠান ও বিবিধ অফিস য়ড়াও সাধারণ জনগণ যেকোনো প্রয়োজনীয় দালিল বা কাগজগরেয় এক বা একাধিক অবিকল কলিয় জন্য এই ফল্রে ব্যবহার করে থাকেন। এই ফল্রেও শির তড়িং ব্যবহার করা হয়। ফটোকিলিয়ারের ভিতরে অন্ধকরে একটি মুর্লায়মান দ্রাম থাকে। এই দ্রামের উপর ধনাজ্বক আধান প্রে করা হয়। য় পৃষ্ঠা ফটোকিলি করতে হবে একটি উজ্জ্বল আলো তাকে আলোকিত করে। পৃষ্ঠার সাদা জলা আলো প্রতিফলিত করে, কিল্ডু অন্ধকর বা ছালানো জলা কোনো আলো প্রতিফলিত করে না। প্রতিফলিত আলো দ্রামের উপর কেপ্রিত্ত হয়। দ্রামের বে স্থানটি সাদা কাগজ য়ায়া প্রতিফলিত আলো পড়ে উজ্জ্বল হয়, সেই জলা থেকে আধান বেয় হরে যায়। দ্রামের কেবল কল্মকার জলাই ধনাজ্বক আধানে আহিত থাকে। ম্বণাজ্বকতাবে আহিত কর্যবিরের পাউডার কালি (টোনার) দ্রামের উপর স্থো করা হয়। ম্বণাজ্বকতাবে আহিত কর্যবিরের পাউডার কালি (টোনার) দ্রামের উপর স্থো করা হয়। মাদা কাগজকে ধনাজ্বকতাবে আহিত করা হয়। এটিকে দ্রামের সাথে ক্রপ্রের সাথে আঠলোভাবে লেপে থাকে। এক টুকরা সাদা কাগজকে ধনাজ্বকতাবে আহিত করা হয়। এটিকে দ্রামের সাথে ক্রপ্রকার বা এই কাগজটি দ্রাম থেকে কর্যবির পাউডারের প্যটির্ল তার পারে তুলে আনে। টোনার (—) টি কাগজ (+) কর্তৃক আকৃট হবে। ক্রপজ্বখানা উক্তক্ত রোগারের মধ্য দিয়ে চালনা করা হয়। এতে টোনারের কালি পলে যায় এবং কাগজের সাথে মিশে যায়, কলে একটি স্থামী কলি তৈরি হয়।

স্থির তড়িতের বিপদ

অনেক ক্ষেত্রে স্থির তড়িতের উপস্থিতি অসুবিধাজনক এবং বিপদ ডেকে আনতে পারে।

বিমানে দ্বালানি ভরা : আকাশে যখন বিমান উড়ে তখন বায়ুর সাথে ঘর্ষণের ফলে এটি তড়িতাহিত হতে পারে। বিমানের আধান বাড়তে থাকলে বিমান ও ভূপৃষ্ঠের মধ্যে বিভব পার্থক্য বাড়তে থাকে। এত উচ্চ বিভব পার্থক্যের কারণে বিমানে যখন দ্বালানি ভরা হয় তখন কিছু আধান ভূমিতে চলে যাওয়ার সময় স্ফুলিজা সৃষ্টি হওয়ার সম্ভাবনা থাকে, যা বিরাট বিস্ফোরণের কারণ হতে পারে। এই জন্য বিমানের চাকা পরিবাহী রাবার ঘারা তৈরি করা থাকে, যাতে বিমান ভূমি স্পর্শ করলে বিমানে জমা হওয়া আধান নিরাপদে ভূমিতে চলে যেতে পারে। এই সমস্যার সমাধান হচ্ছে বিমান ভূমিতে অবতরণের পর যথাসম্ভব তাড়াড়াড়ি এবং দ্বালানি ভরা শুরু করার আগেই একটি পরিবাহী ঘারা ভূসংযুক্ত করা।

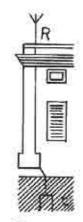
ট্যাংকারে দ্বালানি ভরা : যে সকল ট্যাংকার লরি পেট্রোল, ডিজেল ইত্যাদি দ্বালানি নিয়ে রাস্তা দিয়ে এক স্থান থেকে অন্য স্থানে যাতায়াত করে তাদের বেলায়ও স্ফুলিজা সৃষ্টি ও বিস্ফোরণ থেকে রক্ষা পাওয়ার জন্য দ্বালানি স্থানান্তরের আগে ভূসংযুক্ত করে নিতে হয়।

টেলিভিশন ও কম্পিউটারের মনিটর : ব্যবহারকালে টেলিভিশনের পর্দা ও কম্পিউটারের মনিটর স্থির তড়িতে আহিত হয়। এই আধানগুলো অনাহিত কণা যেমন ধুলোবালি ইত্যাদি আকর্ষণ করে, ফলে এগুলো তাড়াতাড়ি ময়লা হয়ে যায়। কাপড় পান্টানো : আমাদের পরিধেয় কাপড় চোপড় অনেক সময় নিজেদের মধ্যকার ঘর্ষণের ফলে আহিত হয়ে যেতে পারে।

যখন আমরা কাপড় বদলাই তখন আধান ভূমিতে চলে যাওয়ার সময় আমাদের অল্প শক্ খাওয়ার একটা সম্ভাবনা থাকে।

অপারেশন থিয়েটার : যেহেতু ধুলোবালি ও জীবাণু আহিত বস্তু দারা আকৃষ্ট হয়, কাজেই হাসপাতালের অপারেশন থিয়েটারে সাবধনতা অবলম্বন করা হয় যেন সার্জন, সংশ্লিষ্ট ব্যাক্তিবর্গ এবং চিকিৎসাসামগ্রী আধানমুক্ত থাকে। এ জন্য তাদেরকে ভূসংযুক্ত রাখার জন্য পরিবাহী রাবারের জুতা পরতে হয় এবং হাতে রাবারের গ্লাভস ব্যবহার করতে হয়, যাতে ভূমি থেকে সহজে ইলেকট্রন আসা যাওয়া করতে পারে।

পেট্রোলবাহী ট্রাকের সাথে ধাতব শিকল ঝুলানো থাকে : পেট্রোল, ডিজেল বা অন্য তরল জ্বালানিবাহী ট্যাংকার বা ট্রাকের সাথে একটি ধাতব শিকল লাগানো থাকে যা ট্রাক চলার সময় রাস্তা ছুঁয়ে ছুঁয়ে যায়। যখন রাস্তা দিয়ে ট্রাক চলে তখন পেট্রোল ট্যাংকের গায়ে বারবার ধাকা খায় এবং এদিক ওদিক দুলতে থাকে। ট্যাংকের সাথে পেট্রোলের এই ঘর্ষণের ফলে আধান সঞ্চিত হয়। যদি ট্যাংকের কিনারা থেকে একটা স্ফুলিজা সৃষ্টি হয় তাহলে মর্মান্তিক দুর্ঘটনা ঘটতে পারে এবং পেট্রোলে আগুন ধরে যাবে। কাজেই পেট্রোল আধানের জন্য নিরাপদ স্থান নয়। ট্যাংকের পেছনে শিকল লাগিয়ে এই তড়িং ভূমিতে চলে যাবার পথ তৈরি করা হয়। যেহেতু ধাতু খুব ভালো পরিবাহী, তাই তড়িং ধীরে ধীরে ধাতব শিকলের মধ্য দিয়ে মাটিতে চলে যায়।


বিদ্যুৎ লাইনের সাথে ধাতব খুটির সরাসরি সংযোগ থাকে না : রাস্তায় বিদ্যুৎ লাইনের তার খাটাবার সময় ধাতব খুটির সাথে সরাসরি সংযুক্ত করা হয় না। ধাতু তড়িতের সুপরিবাহী। ধাতব খুটির সাথে সরাসরি সংযোগ করা হলে তারের তড়িৎ খুটির মধ্য দিয়ে মাটিতে চলে যেত। কেউ ঐ খুটি স্পর্শ করলে সাথে সাথে তড়িৎস্পৃষ্ট হতো এবং মারাত্মক দুর্ঘটনা ঘটতো। তাই অপরিবাহী পোর্সেলিনের কাপের মধ্য দিয়ে তারকে খুটির সাথে সংযোগ দেওয়া হয়।

বছ্রপাত ও বছ্র নিরোধক: আমরা জানি বায়ুমণ্ডলে জলীয় বাষ্প থাকে। এই জলীয় বাষ্প বায়ুমণ্ডলের আহিত আয়নগুলোর উপর ঘনীভূত হয়ে পানি কণার সৃষ্টি করে এবং তড়িতাহিত হয়। এই ধরনের পানির কণাগুলো একব্রিত হলেই মেঘের উৎপত্তি হয়। মেঘ ধনাত্মক বা ঋণাত্মক যেকোনো ভাবেই আহিত হতে পারে। তড়িতাহিত দুইটি মেঘ কাছাকাছি এলে তাদের মধ্যে তড়িৎক্ষরণ হয়, তখন বিরাট অগ্নিস্ফুলিজ্ঞোর সৃষ্টি হয়। একে বিদ্যুচ্চমক বলা হয়। বিদ্যুচ্চমকের সময় মেঘের চারপাশের বায়ুমণ্ডল হঠাৎ তাপ পেয়ে প্রসারিত হয়। হঠাৎ প্রসারণের ফলে বায়ুমণ্ডলের চাপ

কমে যায়। তথন আশেশাশের বেশি চাপের বায়ু এসে এই প্রনারিত বায়ুকে সংজ্চিত করে। খুব ভাড়াভাড়ি এ ধরনের সহকোচন ও প্রসারণ হয় বলে প্রচণ্ড শব্দের সৃষ্টি হয়। একেই মেষ গর্জন বলে। ভড়িভাহিত মেষে যদি ভড়িতের গরিমাণ বেশি হয়, ভাহলে ভা ভড়িবফরপের মাধ্যমে পৃথিবীতে চলে আসে। একে বলে বন্তুপাত। বন্তুগাতের সাথে সাথে যে শব্দ শোনা বার তাকে বলে বন্তুগাত।

বছ নিরোধক: বছুপাতের ফলে বাতে বাড়িষরের কতি না হয় তার জন্য বছু নিরোধক ব্যবহার করা হয়। একটি ধাতব দণ্ড R কে (চিত্র ১০.১৮) বাড়ির গা ঘেবে এমনভাবে স্থাপন করা হয় বেন এর উপরিতাপ হাদের চেরেও বেলি উচুতে বাকে একং এর নিম্নুচার্গ তালোভাবে মাটিতে পুতে রাখা হয়। দণ্ডের উপরিতাশে করেকটি সৃচিমুখ বাকে।

যখন ডড়িস্কাৰ মেঘ বাড়ির উপরে আসে, তখন এটি R দণ্ডে বিশরীত আধান আবিউ করে। কিন্তু দণ্ডের উপরি প্রাণ্ড উন্মিয়া বিশিক্ত হওয়ার ঐ ডীন্দ্রার্গুলোতে বেশি আধান জমা হয় এবং সৃচিমুধ দিয়ে ভড়িস্কান্দ হয়। বায়ুকাগিলো এই আধান নিজে আহিত হয় এবং মেধের বিশ্বীত আধান কর্তৃক আকৃত্ট হয়ে মেধের দিকে চলে যায় এবং মেধকে নিস্চড়িত করে। কলে বস্তুগাতের সম্ভাবনা কম থাকে।

वित्र : ১०.১৮

ভড়িৎ সকসমন্ন পরিবাহীর মধ্য দিয়ে সংকিত্ততম পথে চলে। মেধে মেধে সৃষ্ট ভড়িৎ উচ্ কত্ত্র ভিতর দিয়ে পৃথিবীতে ভাসতে চার। ঝড় বৃত্তির সময় ভাই ছাভার নিচে, কোনো গাছের নিচে,

ভড়িৎ গরিবাহী খান্ত্র কাছে, গোহার তৈরি পুল কিংবা কাঁটা ভারের কেড়া দেওরালের কাছাকাছি দাঁড়ানোর চেয়ে বৃক্তিভে ভেজা অনেক ভাগো।

বন্দৰান-১০.১

चर्वनं ७ वाद्यनं शक्त्रियाय वाबान मृष्टि।

উদ্দেশ্য : বর্ষন ও বাবেশ প্রক্রিয়ায় আধান সৃষ্টি করে তা প্রদর্শন।

ৰুত্রপান্তি: শোলার বল, কাচ দণ্ড, সিচ্চের কাশড়, রাবারের টুকরা এবং একটি পরিবাহী দণ্ড।

कारकत शता

- একটি হালকা শোলার কাকে একটি সুভার সাহাব্যে কোনো স্ট্যান্ড বা ব্লুক খেকে বৃলিয়ে দাও।
- একটি পুকলো কাচদক্ষ নাও।
- এক ট্রুরা রাবারের সাহাব্যে কাচের এক প্রাশ্ত আবৃত করে সেই প্রাশ্ত হাত দিয়ে ধরো।
- একটি পুকলো সিঙ্কের কাশড়ের টুকরা দিয়ে কাচদন্টের অপর প্রাশ্ত ভালোভাবে ঘবো।
- এখন কাচদক্তের ষষা প্রাশ্তিতি মৃক্তভাবে বৃশানো শোলার বলের কাছে লানো।
- ৬. সাচ দণ্ড শোলার বলকে ভার দিকে আকর্ষণ করছে অর্থাৎ বর্ষপের ফলে কাচদণ্ডটি আহিত হয়েছে।
- ৭. কাচ দশুটি ধনাজ্ঞকভাবে আহিত হয়েছে। (ভড়িৎবীক্ষণ বন্দের সাহায্যে গরীকা করলে ভাই পাত্যা যাবে।)
- এখন আহিত কাচ দক্তটি একটি অনাহিত গরিবাহীর এক গ্রাম্ভের নিকট আনো।
- ৯. সাবেশের ফলে অনাহিত গরিবাহীটি আহিত হবে।কচ দক্তের নিকট প্রান্তে স্বণাত্মক এবং দ্রবতী প্রান্তে ধনাত্মক আধান ভাবিক্ট হবে।
- ১০. কাচ দঙ্টি না সরিয়ে আবিই দঙ্টির দ্রবর্তী গ্রাম্ত ভ্নাপ্ত্র করলে (একটি তার দিরে বা মাটিতে খালি পারে দাড়িয়ে দঙ্টিকে স্পর্ণ করে) ভূমি থেকে ইলেইন এসে ধনাজক আধানকে নিক্ষিয় করে দেবে। কলে দঙ্টিতে কেকা বিশাস্ত্রক আধান থাকবে।
- ১১. এখন সেই দণ্ডটিকে শোলার বলের কাছে নিলে শোলার বলকে ভাকর্ষণ করবে।
- পরিবাহীটি আবেশ প্রক্রিয়ায় আহিত হয়েছে।

वनुनीननी

ক. বহু নিৰ্বাচনী প্ৰশ্ন

সঠিক উত্তরের পাশে টিক (√) চিহ্ন দাও

১। কোনো বস্তুতে আধানের অস্তিত্ব নির্ণয়ের যশ্ব হলো–

(ক) অ্যামিটার

(খ) ভোল্টিমিটার

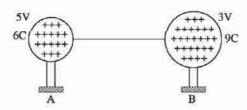
(গ) অণুবীক্ষণ যদত্ত

(খ) তড়িৎবীক্ষণ যদত্ত্ত

২। দুইটি আধানের মধ্যকার তড়িৎ বল নিচের কোনটির উপর নির্ভর করে না ?

i, আধান দুইটির মধ্যবতী দূরত্বের উপর।

🗓 আধান দুইটি যে মাধ্যমে অবস্থিত তার প্রকৃতির উপর ।


iii ভাধান দুইটির ভরের উপর।

কোনটি সঠিক

- क) i vii
- iii viii
- n) ii v iii
- ঘ) i, ii ও iii
- ৩। তড়িৎ তীব্রতার একক হচ্ছে
 - (**季**) N
- (划) Nm
- (9) N m⁻¹
- (可) NC-1

- ৪। ভোল্ট কিসের একক ?
- (ক) তড়িৎ ক্বেব্র
- (খ) তড়িৎ বিভব (গ) তড়িৎ আধান
- (ঘ) তড়িৎ প্রবাহ

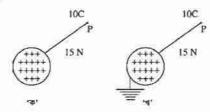
৫। নিচের চিত্রে

- (i) A গোলক থেকে কিছু আধান B গোলকে যাবে
- (ii) B গোলক থেকে কিছু আধান A গোলকে যাবে
- (iii) আধান পথিক্য সর্বদা সমান থাকে।

নিচের কোনটি সঠিক ?

(**क**) i

(划) ii (গ) iii (v i,ii v iii


১৭৪

খ. সঞ্জনশীল

১। রিমা চুল আচড়ানোর পর দেখতে পেল তার চির্নী ছোট ছোট কাগজের টুকরাকে আকর্ষণ করছে। সীমা বলল চির্নীটি ধনাত্মকভাবে আহিত হয়েছে, বার জন্য এটা ঘটেছে। রিমার বক্তব্য চির্নীটি ঋণাত্মক আধানে আহিত হয়েছে। বিষয়টির সুরাহার জন্য দুইজন তাদের পদার্থবিজ্ঞান শিক্ষককে ঝুঁজতে গিয়ে তাকে পদার্থবিজ্ঞান গবেষণাগারে পেল। তিনি সব শুনে তাদেরকে তড়িৎবীক্ষণ যশেত্রর সাহায়্যে পরীক্ষা করে চির্নীর আধানের প্রকৃতি নির্পয় করতে বললেন।

- (ক) আধান বলতে কী বুঝ ?
- (খ) ঘর্ষণে কেন কন্তু আহিত হয় বৃঝিয়ে দাও ।
- (গ) চিরুনীটি আহিত হওয়ার কারণ বর্ণনা কর ।
- (घ) যশত্রটির সাহায্যে কিভাবে চিরুনীটির আধানের প্রকৃতি নির্ণয় করা যাবে ব্যাখ্যা কর।

21

- (ক) তড়িৎ ক্ষেত্র কি ?
- (খ) P বিন্দুতে স্থাপিত বস্তুর অবস্থান পরিবর্তন করলে এটির উপর অনুভূত বলের কিরুপ পরিবর্তন ঘটবে ?
- (গ) 'ক' চিত্রে P বিন্দুতে তড়িৎ প্রাবল্য নির্ণয় কর ।
- (ঘ) চিত্র 'ক' অপেক্ষা চিত্র 'খ' এ অনুভূত বলের পরিবর্তন বিশ্লেষণ কর।

গ. সাধারণ প্রশ্ন

- ১। পরমাণুর গঠনের ভিদ্তিতে কোনো কম্ভুর আহিত হওয়ার ঘটনা ব্যাখ্যা কর।
- ২। কোনো বস্তুকে ঘর্ষণ পশ্বতিতে কীভাবে আহিত করা যায় বর্ণনা কর।
- ৩। তড়িৎ আবেশ কী?
- 8। আবেশি আধান ও আবিফ্ট আধান ক্সতে কী বোঝ?
- ৫। কোনো বস্তুকে আবেশ পশ্বতিতে কীভাবে আহিত করা যায় বর্ণনা কর।
- ৬। একটি স্বর্ণপাত তড়িৎবীক্ষণ যন্তের গঠন বর্ণনা কর।
- ৭। একটি স্বর্ণপাত তড়িৎবীক্ষণ যশত্রকে কীভাবে ধনাত্মক আধানে আহিত করা যায় বর্ণনা কর।
- ৮। একটি স্বর্ণপাত তড়িৎবীক্ষণ যদেত্রর সাহায্যে কীভাবে কোনো আহিত ক্স্তুর আধানের প্রকৃতি নির্ণয় করা যায় বর্ণনা কর।
- ১। দুইটি আধানের মধ্যবর্তী তড়িৎ বল কোন কোন বিষয়ের উপর নির্ভর করে?

একাদশ অধ্যায়

চল তড়িৎ

CURRENT ELECTRICITY

ভাষাদের দৈনন্দিন জীবনের বিভিন্ন ক্ষেত্রে আমরা তড়িৎ বা বিদ্যুতের উপর নির্ভর করে থাকি। আধুনিক যদ্প্রপাতি বা সরজামের প্রায় সবই তড়িতের সাহায্যে চলে। আমরা তড়িতের উপর এতটাই নির্ভরশীল যে, তড়িৎ ছাড়া আমাদের জীবন কেমন হবে তা কর্মনাও করতে পারি না। পূর্ববর্তী অধ্যায়ে আমরা স্থির তড়িৎ নিয়ে আলোচনা করেছি। এ অধ্যায়ে আমরা চল তড়িতের বিভিন্ন বৈদ্যুতিক রাশি বেমন—তড়িৎ প্রবাহমাত্রা, রোধ, তড়িচালক শক্তি এবং বিভব পার্থক্য সম্পর্কে জানতে পারব। এছাড়াও তড়িৎ প্রবাহের দিক, পরিবাহী, অপরিবাহী এবং অর্ধপরিবাহী, তড়িৎ বর্তনী, ও'মের সূত্র, স্থির এবং পরিবর্তনশীল রোধ, রোধের নির্ভরশীলতা, রোধের শ্রেণি ও সমাম্তরাল সমবায়, তড়িৎ ক্মতার হিসাব, তড়িতের সিস্টেম লস এবং লোডশেডিং, তড়িতের নিরাপদ ও কার্যকর ব্যবহার নিয়ে আলোচনা করব।]

এ অধ্যায় পাঠ পেবে আমরা-

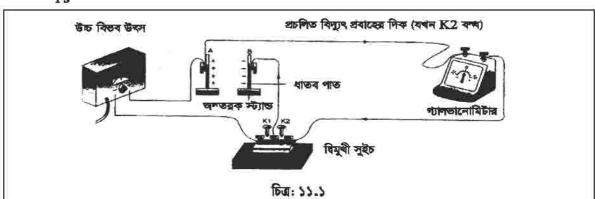
- ১. স্পির তড়িৎ হতে চল তড়িৎ সৃষ্টি প্রদর্শন করতে পারব।
- তড়িৎ প্রবাহের দিক এবং ইলেকট্রন প্রবাহের দিক ব্যাখ্যা করতে পারব।
- তড়িৎ যশত্র ও উপকরণের প্রতীক ব্যবহার করে বর্তনী অঞ্চন করতে পারব।
- পরিবাহী অপরিবাহী এবং অর্ধপরিবাহী ব্যাখ্যা করতে পারব।
- শেখচিত্রের সাহায্যে ভড়িৎ প্রবাহ এবং বিভব পার্থক্য এই দুইয়ের মধ্যে সম্পর্ক স্থাপন করতে পারব।
- স্থির রোধ এবং পরিবর্তনশীল রোধ ব্যাখ্যা করতে পারব।
- তডিচালক শক্তি একং বিভব পার্থক্য ব্যাখ্যা করতে পারব।
- রোধের নির্ভরশীলতা ব্যাখ্যা করতে পারব।
- ৯. আপেক্ষিক রোধ ও পরিবাহকত্ব ব্যাখ্যা করতে পারব।
- ১০. শ্রেণি ও সমান্তরাল বর্তনী ব্যবহার করতে পারব।
- ১১. বর্তনীতে তুল্য রোধ ব্যবহার করতে পারব।
- ১২. তড়িৎ ক্ষমতার হিসাব করতে পারব।
- ১৩. ভডিতের সিস্টেম শস এবং শোডশেডিং ব্যাখ্যা করতে পারব।
- ১৪. তড়িতের নিরাপদ ও কার্যকর ব্যবহার বর্ণনা করতে পারব।
- ১৫. বাসা বাড়িতে ব্যবহার উপযোগী বর্তনীর নকশা প্রণয়ন করে এর বিভিন্ন অংশে এসি উৎস–এর ব্যবহার প্রদর্শন করতে পারব।
- ১৬. ভড়িতের নিরাপদ ও কার্যকর ব্যবহারের বিষয়ে সচেতনতা সৃষ্টি করতে পারব।
- ১৭. তড়িৎ শব্রির অপচয় রোধ ও সংরক্ষণে সচেতনতা সৃষ্টির জন্য পোস্টার অঞ্চন করতে পারব।

১১.১ স্থির তড়িৎ হতে চল তড়িৎ সৃষ্টি

Production of current electricity from static electricity

তড়িৎ প্রবাহ

দুইটি ভিন্ন বিভবের বস্তুকে যখন পরিবাহী তার ধারা সংযুক্ত করা হয়, তখন নিম্ন বিভবের বস্তু থেকে উচ্চ বিভবের বস্তুতে ইলেকট্রন প্রবাহিত হয়। যতক্ষণ পর্যন্ত বস্তুধয়ের মধ্যে বিভব পার্থক্য শূন্য না হয় ততক্ষণ পর্যন্ত এই প্রবাহ বজায় থাকে। কোনো প্রক্রিয়ার মাধ্যমে যদি বস্তুধয়ের মধ্যে বিভব পার্থক্য বজায় রাখা যায় তখন এই ইলেকট্রন প্রবাহ নিরবচ্ছিন্নভাবে চলতে থাকে। ইলেকট্রনের এই নিরবচ্ছিন্ন প্রবাহই হলো তড়িৎ প্রবাহ।


কোনো পরিবাহীর যেকোনো প্রস্থাছেদের মধ্য দিয়ে একক সময়ে যে পরিমাণ আধান প্রবাহিত হয় তাকে তড়িৎ প্রবাহ বলে। কোনো পরিবাহীর যেকোনো প্রস্থাছেদের মধ্য দিয়ে t সময়ে যদি Q পরিমাণ আধান প্রবাহিত হয়, তাহলে তড়িৎ প্রবাহ I হবে, $I=rac{Q}{t}$

একক: তড়িৎ প্রবাহের একক হলো জ্যাম্পিয়ার।

কোনো বিচ্ছিন্ন আহিত পরিবাহীতে আধান এর পৃষ্ঠে অবস্থান করে এবং চপাচপ করতে পারে না। এ ধরনের আধানকে বগা হয় স্থির তড়িৎ আধান। যদি এই আধানের চপাচলের জন্য পরিবহন পথের ব্যবস্থা করা হয় তখন এই আধান পরিবাহীতে আবন্ধ না ধেকে প্রবাহিত হতে শুরু করে। যখন এমনটি ঘটে, তখন আমরা বলি যে, তড়িৎ প্রবাহের সৃষ্টি হয়েছে।

একে A ঘারা সূচিত করা হয়। কোনো পরিবাহীর যেকোনো প্রস্পক্ষেদের মধ্য দিয়ে $1_{
m S}$ ightharpoonup 1 ightharpoonup 1 তিড়িৎ প্রবাহ চলে। অ্যাম্পিয়ারের সম্জ্ঞা প্রথম অধ্যায়ে দেওয়া আছে।

$$\therefore I = \frac{1 \text{ C}}{1 \text{ s}} = 1 \text{ Cs}^{-1} = 1 \text{ A}$$

গতিশীল আধান কর্তৃক কীভাবে চল তড়িৎ উৎপন্ন হয় তা উপরের ১১.১ চিত্রের বর্তনীর আলোকে বর্ণনা করা হলো। শুরুতেই দুইটি প্লাগ চাবি K_1 এবং K_2 উঠিয়ে ফেলা হয় এবং ধাতব পাত A এবং B কে ভূসংযুক্ত করে (খালি পায়ে হাত দিয়ে স্পর্শ করে) স্পর্শ করে জনাহিত করা হয়। এবার চাবি K_1 কন্ম করে দিলে উচ্চ বিভব উৎসটি ধাতব পাত দুইটির সাথে সংযুক্ত হবে।

এরপর উচ্চ বিশুব উৎসের সূইচটি অন্ করে ধাতব পাত দুইটিকে সমপরিমাণ ধনাত্মক এবং ঋণাত্মক আধানে আহিত করা হয়। এই চার্জ বা আধান পাত দুইটিতে স্থির তড়িতের সৃষ্টি করে। এবার চাবি K_1 খুলে ফেলে এবং K_2 চাবি প্লাগে প্রবেশ করালে ধনাত্মক এবং ঋণাত্মক আধানে আহিত পাত দুইটি গ্যালভানোমিটারের সাথে সংযুক্ত হবে ফলে একটি অবিচ্ছিত্ম পরিবহন পথের সৃষ্টি হবে এবং এ পথে তড়িৎ প্রবাহ চলবে। এ বর্তনীতে গ্যালভানোমিটার হলো এমন একটি যশত্র যা তড়িৎ

প্রবাহের অস্তিত্ব নির্ণয় করতে পারে। দেখা যাবে গ্যালভানোমিটারের কাঁটাটি ক্ষণিকের জন্য একদিকে বিক্ষিণ্ড হয়েছে এক পরক্ষণেই তা পূর্বের অবস্থানে ফিরে এসেছে।

গ্যালভানোমিটারের বিক্ষেপ নির্দেশ করে যে ভড়িং প্রবাহের সৃষ্টি হয়েছে। এই ভড়িং প্রবাহ কীভাবে সৃষ্টি হলোঃ স্বাণাত্রক আধানে আহিত পাত B থেকে ইলেকট্রন গ্যালভানোমিটারের মধ্য দিয়ে প্রবাহিত হয়ে ধনাত্রক আধানে আহিত পাত A এ পৌছায় এবং এর ফলে ভড়িং প্রবাহের সৃষ্টি হয়।

A পাতের ধনাত্মক আধান, B পাত থেকে আগত ইলেক্ট্রনের ঋণাত্মক আধানদারা নিষ্ক্রিয় হয়। যার ফলে ধাতব পাত দুইটির আধান ক্রনের মাধ্যমে ক্ষণস্থায়ী প্রবাহের সৃষ্টি হয়, যা গ্যালভানোমিটারের বিক্ষেপ দারা সনাক্ত করা যায়।

১১.২ ভড়িৎ প্রবাহের দিক এবং ইলেকট্রন প্রবাহের দিক

Direction of electricity and direction of electron flow

প্রথম যখন চল তড়িৎ আবিষ্কৃত হয়, তখন মনে করা হতো যে ধনাত্মক আধানের প্রবাহের ফলে তড়িৎ প্রবাহের সৃষ্টি হয় এবং এই ধনাত্মক আধান উচ্চতর বিভব থেকে নিম্নুতর বিভবের দিকে প্রবাহিত হয়। তাই তড়িৎ প্রবাহের প্রচলিত দিক ধরা হয় উচ্চতর বিভব থেকে নিম্নুতর বিভবের দিকে অধবা তড়িৎ কোষের ধনাত্মক পাত থেকে ঋণাত্মক পাতের দিকে। কিন্তু আমরা জানি যে, প্রকৃতপক্ষে তড়িৎ প্রবাহ হলো ঋণাত্মক আধান তথা ইলেকট্রনের প্রবাহের জন্য ফলে তড়িৎ প্রবাহের প্রকৃত দিক হলো নিম্নুতর বিভব থেকে উচ্চতর বিভবের দিকে অর্থাৎ তড়িৎ কোষের ঋণাত্মক পাত থেকে ধনাত্মক পাতের দিকে। স্তরাং তড়িৎ প্রবাহের প্রকৃত দিক প্রচলিত দিকের বিপরীত। চিত্রে প্রদর্শিত তীর চিহ্ন তড়িৎ প্রবাহের প্রকৃত দিক নির্দেশ করছে।

বর্তনী চিত্র অঞ্চন করার সময় আমরা ভড়িৎ প্রবাহের প্রচলিত দিককেই অনুসরণ করব।

১১.৩ ভড়িৎ প্ৰভীক

Electric symbols

তড়িৎ প্রবাহ চলার সম্পূর্ণ পথকে তড়িৎ বর্তনী বলে। যখন কোনো কোষের পাত দুইটিকে কোনো রোধকের দুই প্রান্ত বা তড়িৎ উপকরণের দুই প্রান্তের সাথে সংযুক্ত করা হয়, তখন একটি তড়িৎ বর্তনী তৈরি হয়।

চল তড়িৎ পাঠের সময় আমাদেরকে সহজ্ব এবং পরিস্কার বর্তনী চিত্র আঁকতে হয়। নিচের সারণিতে কিছু বৈদ্যুতিক উপকরণের প্রতীক দেখানো হলো যেগুলো সাধারণত তড়িৎ বর্তনী আঁকতে ব্যবহুত হয়।

১১.১: কর্ডনীর প্রতীকসমূহ

উপকরণ	প্ৰতীক
সূইচ	
विभूबी সূইচ	-1:
ডিসি উৎস –কোষ	
ডিসি উৎস–ব্যাটারি	
এ সি উৎস	<u>~</u> @—
স্থির রোধ	ww-
পরিবর্তনশীল রোধ	<u></u>
ফিউছ	_=

উপকরণ	প্রতীক
স্থ্যামিটার	-(a)-
ভোল্টমিটার	- -
গ্যাশতানোমিটার	<u> </u>
ভূসংযোগ	+
বাড়াবাড়ি তার	
সংযোগবিহীন ভার	
প্যাচানো তার বা কুড়গী	- 282825
বাৰ	- ○ 1 - ⊗-
ধারক	

मिट्ड क्यः

একটি সুইচ, ভড়িৎ কোৰ, স্থির মানের রোধ একং জ্যামিটার পরপর ব্যবহার করে একটি বর্তনী জ্ঞকন কর। এবার একটি ভোন্টমিটারকে স্থির মানের রোধের দুই প্রান্তে সমান্তরালে যুক্ত কর।

১১.৪ পরিবাহী, অপরিবাহী এবং অর্থপরিবাহী

Conductor, insulator and semiconductor

আমরা জানি, তড়িৎ প্রবাহ হলো কোনো পদার্থের মধ্য দিয়ে আধানের প্রবাহ। এই তড়িৎ প্রবাহ কোনো কোনো পদার্থের মধ্য দিয়ে খৃব সহজেই চলাচল করতে পারে। আবার এমন কিছু পদার্থ আছে যেগুলোর মধ্য দিয়ে ভড়িৎ আদৌ চলাচল করতে পারে না। তড়িৎ পরিবাহিতা ধর্মের উপর ভিশ্তি করে কঠিন পদার্থকে তিন প্রেনিতে ভাগ করা যায়। যথা— (১) পরিবাহী (২) অর্থপরিবাহী।

- ১. পরিবাধী: যে সকল পদার্থের মধ্য দিয়ে খুব সহজেই ভড়িৎ প্রবাহ চলতে পারে তাদেরকে পরিবাহী বলে। এসকল পদার্থের মধ্য দিয়ে ইলেকট্রন মুক্তভাবে চলাচল করতে পারে। বাতব তারের মধ্য দিয়ে আবান ইলেকট্রন হারা পরিবাহিত হয়। এ কারণে বাতব পদার্থপূলো ভড়িৎ সুপরিবাহী। তামা, য়ুপা, আল্মিনিয়াম ইত্যাদি সুপরিবাহী পদার্থ। যে কারণে বৈদ্যুক্তিক সংযোজকে বাতব তার ব্যবহার করা হয়।
- ২. অপরিবাধী: যে সকল পদার্থের মধ্য দিয়ে ভড়িৎ প্রবাহ চলতে পারে না ভাসেরকে অপরিবাহী বা অভ্যরক পদার্থ বলে। অর্থাৎ যে সকল পদার্থের মধ্য দিয়ে ইলেকট্রন চলাচল করতে পারে না সেগুলো হলো অপরিবাহী পদার্থ। যেমন— প্রাস্টিক, রাবার, কাঠ, কাচ ইভ্যাদি। অপরিবাহী পদার্থের মধ্যে দিয়ে সহজে ইলেকট্রন থাকে না। প্রাস্টিক জাতীয় পদার্থের মধ্য দিয়ে সহজে ইলেকট্রন প্রবাহিত হতে পারে না। যার কলে প্রাস্টিক হলো বিদ্যুতের জন্য অপরিবাহী পদার্থ। এ কারণেই বৈদ্যুতিক মিসিক্রগণ যে সকল ফর্ডু ড্রাইভার একং প্রায়ার ব্যবহার করেন ভাসের হাতল প্রাস্টিক জাতীয় পদার্থ দারা মোড়ানো থাকে। এ ছাড়া আমাদের দৈনন্দিন প্রয়োজনে যে সকল ভামার বৈদ্যুতিক ভার ব্যবহার করি সেগুলো প্রাস্টিক দারা আবৃত থাকে।
- ৩. অর্থপরিবাহী: যে সকল পদার্থের ভড়িৎ পরিবহন ক্ষমতা সাধারণ ভাগমান্তায় পরিবাহী এবং অপরিবাহী পদার্থের মাঝামাঝি, সে সকল পদার্থকে অর্থপরিবাহী বলে। যেমন— জার্মেনিয়াম, সিলিকন ইভ্যাদি। সুবিধামত অপদ্রব্য মিশিয়ে অর্থপরিবাহী পদার্থের ভড়িৎ পরিবাহকত্ব বৃশ্বি করা যায়।

১১.৫ তড়িচ্চালক শক্তি এবং বিভব পার্থক্য Electromotive force and potential difference

তড়িচালক শক্তি

কোনো বর্তনীতে তড়িৎ প্রবাহ চালনা করার জন্য তড়িৎশক্তির প্রয়োজন হয়। যে সকল যদ্র অন্যকোনো ধরনের শক্তিকে তড়িৎশক্তিতে রূপান্তরিত করতে পারে তাদেরই কেবল তড়িচ্চালক শক্তি আছে। যেমন— কোম, জেনারেটর ইত্যাদি। তড়িৎকোম রাসায়নিক শক্তিকে তড়িৎশক্তিতে রূপান্তরিত করে এবং জেনারেটর যান্ত্রিক শক্তিকে তড়িৎশক্তিতে রূপান্তরিত করে। কোনো তড়িৎ উৎস একক ধনাত্মক আধানকে বর্তনীর এক বিন্দু থেকে উৎসসহ সম্পূর্ণ বর্তনী ঘুরিয়ে আবার ঐ বিন্দুতে আনতে যে পরিমাণ কাজ সম্পন্ন করে, তথা উৎস যে তড়িৎশক্তি ব্যয় করে, তাকে ঐ উৎসের তড়িচ্চালক শক্তি বলে। যদি Q আধানকে সম্পূর্ণ বর্তনী ঘুরিয়ে আনতে W পরিমাণ কাজ সম্পন্ন হয়, তাহলে একক আধানকে সম্পূর্ণ বর্তনী ঘুরিয়ে আনতে স্কর্পূর্ণ বর্তনী ঘুরিয়ে আনতে তড়িচ্চালক শক্তি,

$$E = \frac{W}{Q}$$

একক: তড়িচ্চালক শক্তির ${
m SI}$ একক হলো ${
m JC}^{-1}$ যাকে ভোল্ট $({
m V})$ বলা হয়।

বিভব পার্থক্য

পরিবাহীর দুই প্রান্তের বিভব পার্থক্যের কারণে পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহিত হয়। একক ধনাত্বক আধানকে বর্তনীর এক বিন্দু থেকে অপর বিন্দুতে স্থানান্তর করতে যে পরিমাণ কাজ সম্পন্ন হয় তাকে ঐ দুই বিন্দুর বিভব পার্থক্য বলে। দ্রাইসেল দিয়ে টর্চ দ্ধালালে সেল যে তড়িৎ শক্তি সরবরাহ করে তা আলো ও তাপ শক্তিতে রূপান্তরিত হয়।

শক্তির এই রূপান্তর প্রক্রিয়ায় শক্তির নিত্যতা সংরক্ষিত হয়। বাল্পের মধ্য দিয়ে একক আধান স্থানান্তরের ফলে যে পরিমাণ শক্তি রূপান্তরিত হয় তার পরিমাণই হলো বাল্পের দুই প্রান্তের বিভব পার্থক্য।

সুতরাং বৈদ্যুতিক বর্তনীর দুইটি বিন্দুর মধ্য দিয়ে একক ধনাত্ত্বক আধান স্থানান্তরিত হলে যে পরিমাণ তড়িৎশক্তি অন্য কোনো ধরনের শক্তিতে (যেমন– তাপ ও আলো) রূপান্তরিত হয়, তার পরিমাণই ঐ দুই বিন্দুর বিভব পার্থক্য। Q আধান স্থানান্তরের জন্য রূপান্তরিত তড়িৎশক্তির পরিমাণ W হলে, ঐ দুই বিন্দুর বিভব পার্থক্য হলো

$$V = \frac{W}{Q}$$

বিভব পার্থক্য এবং তড়িচ্চালক শক্তির SI একক অভিন্ন। অর্থাৎ ভোল্ট (V)। দুইটি বিন্দুর বিভব পার্থক্য 1 ভোল্ট হবে যদি 1 কুলন্দ ধনাত্মক আধান বর্তনীর ঐ দুই বিন্দুর মধ্য দিয়ে প্রবাহিত হবার ফলে 1 জুল তড়িৎশক্তি অন্যকোনো ধরনের শক্তিতে রূপান্তরিত হয়।

পরীক্ষণ : ভোল্টমিটারের সাহায্যে একটি দ্রাইসেলের দুই প্রান্তের বিভব পার্থক্য পরিমাপ কর। এটিই কোষের তড়িচালক শক্তি E। এবার কোষটি দিয়ে টর্চের বাল্প দ্বালানো অবস্থায় কোষের দুই প্রান্তের বিভব পার্থক্য পরিমাপ কর।

প্রবাহ চলাকালীন ভোল্টমিটারের পাঠই হলো বাল্পের বা রোধের দুই প্রান্তের বিভব পার্থক্য V। এবার পরিমাপকৃত তড়িচ্চালকশক্তি এবং বিভব পার্থক্যের মানের তুলনা কর। তুমি দেখতে পাবে E এর মান V এর মানের চেয়ে বড়। কোনো কোষের তড়িচ্চালক শক্তি কোষসহ বর্তনীর বিভিন্ন অংশে যে সকল বিভব পার্থক্যের সৃষ্টি হয় তাদের যোগফলের সমান।

১১.৬ বিভব পার্থক্য এবং তড়িৎ প্রবাহের মধ্যে সম্পর্ক: ও মের সূত্র

Relationship between potential difference and electricity- Ohm's law

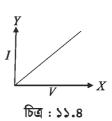
আমরা জানি কোনো পরিবাহীর দুই প্রান্তের মধ্যে বিভব পার্থক্য থাকলে তার মধ্য দিয়ে তড়িৎ প্রবাহিত হয়। এই তড়িৎ প্রবাহের মান নির্ভর করে পরিবাহীর দুই প্রান্তে কী পরিমাণ বিভব পার্থক্য প্রয়োগ করা হয়েছে তার উপর, পরিবাহী এবং তার তাপমাত্রার উপর। জর্জ সাইমন ও'ম কোনো পরিবাহী তারের মধ্য দিয়ে প্রবাহিত তড়িৎ প্রবাহমাত্রা এবং এর দুই প্রান্তের বিভব পার্থক্যের মধ্যে যে সম্পর্ক রয়েছে সে বিষয়ে নিমুবর্ণিত সূত্র প্রদান করেন যা ও'মের সূত্র নামে পরিচিত।

ও মের সূত্র

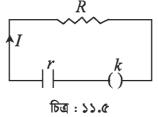
তাপমাত্রা স্থির থাকলে কোনো পরিবাহীর মধ্য দিয়ে যে তড়িৎ প্রবাহ চলে তা ঐ পরিবাহীর দুই প্রান্তের বিভব পার্থক্যের সমানুপাতিক। সমানুপাতিক বলতে বুঝায় যদি পরিবাহীর দুই প্রান্তের বিভব পার্থক্য দ্বিগুণ করা হয়, তবে পরিবাহীর মধ্য দিয়ে প্রবাহিত তড়িৎ প্রবাহ দ্বিগুণ হবে। আবার, যদি পরিবাহীর দুই প্রান্তের বিভব পার্থক্য এক—তৃতীয়াংশ করা হয়, তবে পরিবাহীর মধ্য দিয়ে প্রবাহিত তড়িৎ প্রবাহও এক—তৃতীয়াংশ হবে।

মনে করি, AB একটি পরিবাহী তার। এর দুই প্রান্তের বিভব যথাক্রমে V_A এবং V_B [চিত্র ১১.৩]। যদি $V_A>V_B$ হয়, তাহলে পরিবাহীর দুই প্রান্তের বিভব পার্থক্য হবে $V=V_A-V_B$ ।

$$V_A$$
 I V_B B


এখন স্থির তাপমাত্রায় পরিবাহীর মধ্য দিয়ে প্রবাহিত তড়িৎ প্রবাহ I হলে, ও মের সূত্রানুসারে,

$$I \propto V$$


$$\Rightarrow \frac{V}{I} = R = 4$$
্বক

এই ধ্রবককে ঐ তাপমাত্রায় ঐ পরিবাহীর রোধ বলে।

অথবা
$$I = \frac{V}{R}$$

একটি ছক কাগজের X অক্ষ বরাবর পরিবাহীর দুই প্রান্তের বিভব পার্থক্য V এবং Y অক্ষ বরাবর তড়িৎ প্রবাহ I স্থাপন করে লেখচিত্র অজ্জন করলে এটি মূলকিদুগামী একটি সরলরেখা হবে [চিত্র : ১১.8] [

১১.৫ চিত্রে একটি সরলবর্তনী দেখানো হলো। E তড়িৎ চালকশক্তি ও r অভ্যন্তরীণ রোধের একটি কোষকে R স্থির মানের রোধের সাথে সংযুক্ত করা হলো। ও'মের সূত্র প্রয়োগ করে এ বর্তনীতে তড়িৎ প্রবাহ I পাওয়া যায়,

$$I = \frac{E}{R+r}$$

গাণিকিক উদায়রণ ১১.১ : একটি যেটির গাড়ির হেডলাইটের কিলামেন্টের মধ্যদিরে 4 A ভড়িৎ প্রবাহিত হচ্ছে। ফিলামেন্টের প্রাশ্তররের বিভব পার্থক্য 12 V হলে এর রোধ কম্ভ ?

লামরা জানি.

$$I = \frac{V}{R}$$

$$\exists I R = \frac{V}{I}$$

$$= \frac{12V}{4A}$$

$$= 3 \Omega \quad \&: 3 \Omega$$

এখানে, ভড়িৎ প্ৰবাহ, I=4 A বিভব গাৰ্থক্য , V=12 V রোধ , R=?

১১.৭ রোষ: স্থির এবং পরিবর্তী রোধ

Resistance: constant and variable resistance

শামরা জানি, তড়িৎ প্রবাহ হলো ইলেকট্রনের প্রবাহ। ইলেকট্রন কোনো পরিবাহীর মধ্য দিয়ে চলার সময় এর লত্যান্ডরের অণু পরমাণ্র সাথে সংঘর্ষে লিন্ড হয়। ফলে এদের গতি বাধার্যত হয় এবং তড়িৎ প্রবাহ বিল্লিড হয়। পরিবাহীর এই ধর্মকে রোধ বলে। ও মের সূত্র থেকে শামরা পাই,

নির্দিন্ট ভাশমান্ত্রার , রোধ
$$R=rac{V}{I}$$
 $=rac{$ ভারের দুই প্রান্দেতর বিভব পার্থক্য $}{}$ ভারের ভঞ্জিপ্রবাহ

ব্দৰ্শাৎ, নিশিক্ট তাগমান্ত্ৰায় কোনো পরিবাহীর দুই প্রান্তের বিভব পার্থক্য এবং ভড়িংশ্রবাহ I এর অনুপাত হারা ঐ তাপমান্ত্রায় ঐ পরিবাহীর রোব পরিমাপ করা হয়।

রোধের SI একক হলো ও'ম। একে বড়ু হরকের ওমেগা (Ω) যারা প্রকাশ করা হয়। কোনো পরিবাহীর দুই প্রান্তের বিভব পার্থক্য IV হলে ভার মধ্য দিয়ে যদি IA ভঙিৎ প্রবাহ চলে ভবে ভার রোধকে $I\Omega$ বলে।

রোবক: নির্দিন্ট মানের রোধবিশিন্ট যে পরিবাহী ভার কোনো বর্তনীতে ব্যবহার করা হয় ভাকে রোধক বলে। রোধক ব্যবহারের প্রাথমিক উদ্দেশ্য হলো বর্তনীতে প্রবাহিত ভড়িভের মান নিয়দত্রণ করা। বর্তনীতে ব্যবহুত রোধক দুই প্রকার। ফার্যা—

- ১. স্থির মানের ব্রোথক
- ২. পরিবর্তী রোধক
- ১. স্থিয় মানের রোধক: যে সকল রোধকের রোধের মান নির্দিষ্ট ভাদেরকে স্থির মানের রোধক বলে। সাধারণভ ল্যাবরেটরিতে যে সকল স্থির মানের রোধক ব্যবহার করা হর সেপুলো ১১.৬ নং চিত্রে দেখানো হলো:

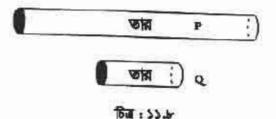
২. পরিবর্জী রোধক: পরিবর্জী রোধক হলো সেই সকল রোধক যাদের রোধের মান প্ররোজন অনুবারী পরিবর্জন করা বার। এদেরকে রিভস্টেটও কলা হর। কোনো বর্জনীতে যথন ভড়িং প্রবাহের মানের পরিবর্জনের প্রয়োজনীরতা দেখা দের তথনই কেকা বর্জনীতে রিভস্টেট অর্ল্ডভুক্ত করা হর।

১১.৭ নং চিত্রে শ্যাকরেটরিতে সাধারণত যে ধরনের রিপ্তস্টেট ব্যবহার করা ভা দেখানো হয়েছে।

हिन: 33.9

১১.৮ রোখের নির্ভরশীলভা

Dependence of resistance

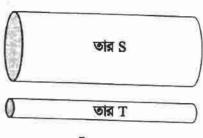

আমরা জানি, ফান ডাপমাত্রা এবং অন্যান্য ভৌত অকথা (যেমন— দৈর্ঘ্য, প্রস্থাজেদ, উপাদান) অপরিবর্তিত থাকে তথন পরিবাহীর রোধ স্থির থাকে।

কোনো পরিবাহীর ত্রোধ নিল্লের চারটি বিবরের উপর নির্ভর করে।

- ১. পরিবাহীর দৈর্ঘ্য
- ২. পরিবাহীর প্রন্থান্দেদের ক্ষেত্রকল
- ৩. পরিবাহীর উপাদান এবং
- ৪. পরিবাহীর তাপমাত্রা

ভাশমাত্রা স্থির থাকলে কোনো পরিবাহীর রোধ শুধুমাত্র এর দৈর্ঘ্য, প্রস্থাছেদের ক্ষেত্রফল এবং উপাদানের উপর নির্কর করে। রোধের এই নির্করশীলতা দুইটি সূত্রের সাহায্যে প্রকাশ করা যায়।

১১.৮ চিত্রে একই প্রস্থাজেদের ক্ষেত্রফল এবং একই উপাদান যারা তৈরি দুইটি পরিবাহী ভার P এবং Q দেখানো হয়েছে। P ভারের দৈর্য্য Q ভারের চেরে বেশি হওরার ভার রোখও বেশি।



দৈর্ঘ্যের সৃদ্ধঃ নির্দিক্ট ভাগমান্ত্রায় নির্দিক্ট উপাদানের পরিবাহীর প্রশক্ষেদের ক্ষেত্রকণ নির ধাকণে পরিবাহীর রোধ এর দৈর্ঘ্যের সমানুগাতিক।

পরিবাহির দৈর্ঘ্য L, প্রস্পচ্ছেদের ক্ষেত্রকল A এবং রোধ R হলে, এই সূত্রানুসারে

$$R \propto L$$
 বৰ্ণন ভাগনাত্ৰা, উপাদান একং A ধ্ব বাকে। (11.1)

১১.৯ চিত্রে একই দৈর্ঘের এক একই উপাদান দারা ভৈরি দুইটি গরিবাহী ভার S এক T সেখানো হয়েছে। S ভারের প্রশক্ষেদের কেত্রকন T ভারের প্রশক্ষেদের কেত্রকন বিশ্ব ভার রোধ কম।

हिन्न ১১.৯

প্রস্বচ্ছেদের সূত্র: নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট উপাদানের পরিবাহীর দৈর্ঘ্য স্বির ধাকলে পরিবাহীর রোধ এর প্রস্বচ্ছেদের ক্ষেত্রফলের ব্যস্তানুপাতিক।

অর্থাৎ
$$R \propto \frac{1}{A}$$
 বখন তাপমাত্রা, উপাদান এবং L ধ্ব থাকে (11.2)

ভাপমাত্রা বাড়লে পরিবাহীর রোধ বাড়ে কিশ্ছ রোধ ভাপমাত্রার সমানুপাতিক নয়। দৈর্ঘ্য, প্রস্থচ্ছেদের ক্ষেত্রফল সমান থাকলেও বিভিন্ন পরিবাহীর রোধ বিভিন্ন হয়। যেমন, একই দৈর্ঘ্য ও একই প্রস্থচ্ছেদের এবং একই ভাপমাত্রায় রুপার ভারের রোধের চেয়ে টাংস্টেনের ভারের রোধ বেশি।

১১.৯ ভাপেঞ্চিক রোধ এবং পরিবাহকত্ত্ব

Resistivity and conductivity

নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট উপাদানের পরিবাহীর রোধ তার দৈর্ঘ্যের সমানুপাতে এবং প্রস্থাছেদের ক্ষেত্রফলের ব্যস্তানুপাতে পরিবর্তিত হয়। সুতরাং রোধের সূত্র থেকে পাই,

এখানে ho একটি ধ্বক, যার মান পরিবাহীর উপাদান এবং তাপমাত্রার উপর নির্ভরশীল। একে ঐ তাপমাত্রায় পরিবাহীর উপাদানের আপেক্ষিক রোধ বা রোধকত্ব বলে।

(11.3) সমীকরণে L=1 একক এবং A=1 একক হলে, ho=R হয়।

অর্থাৎ কোনো নির্দিউ তাপমাত্রার একক দৈর্ঘ্য ও একক প্রস্থচ্ছেদের ক্ষেত্রফগবিশিউ কোনো পরিবাহীর রোধকে ঐ তাপমাত্রায় এর উপাদানের আপেক্ষিক রোধ বলে।

নির্দিষ্ট তাপমাত্রায় কোনো পরিবাহীর রোধ এর ভৌত অবস্থার (যেমন দৈর্ঘ্য, প্রস্থচ্ছেদ ইত্যাদি) উপর নির্ভর করে। কিন্তু এর আপেক্ষিক রোধ শুধুমাত্র এর উপাদানের উপর নির্ভরশীল।

আপেক্ষিক রোধের একক: (11.3) সমীকরণকে সাজিয়ে লেখা যায়,

$$\rho = R \frac{A}{L} \tag{11.4}$$

সমীকরণের ডানপাশের রাশিগুলোর একক বসিয়ে আপেক্ষিক রোধক ho –এর একক পাওয়া যায় , $rac{\Omega \ m^2}{m} = \Omega \ m$

তাৎপর্য: $20~^\circ\text{C}$ তাপমাত্রায় রুপার আপেক্ষিক রোধ $1.6\times10^{-8}~\Omega~m$ । অর্থাৎ $20~^\circ\text{C}$ তাপমাত্রায় 1m দৈর্ঘ্য ও $1m^2$ প্রস্থাচ্ছেদের ক্ষেত্রফলবিশিস্ট রুপার তারের রোধ হবে $1.6\times10^{-8}~\Omega$ । ডান পাশের সারণিতে কিছু সাধারণ পদার্থের আপেক্ষিক রোধ দেখানো হয়েছে।

সারণি :	১১.২: বিভিন্ন	পদার্থের	আপেক্ষিক	রোধ
---------	---------------	----------	----------	-----

পদার্থ	আপেক্ষিক রোধ (Ω m)
রুপা	1.6×10^{-8}
তামা	1.7×10^{-8}
টাংস্টেন	5.5×10^{-8}
নাইক্রোম	100×10^{-8}

উপরের সারণি থেকে আমরা দেখতে পাই, যে সকল পদার্থের আপেক্ষিক রোধ কম সেগুলো তড়িতের জন্য সুপরিবাহক হিসেবে কাজ করে। যেমন, তামা নাইক্রোমের তুলনায় তড়িৎ সুপরিবাহী। এ কারণেই বৈদ্যুতিক বর্তনীতে সংযোগ তার হিসেবে তামার ব্যাপক ব্যবহার রয়েছে।

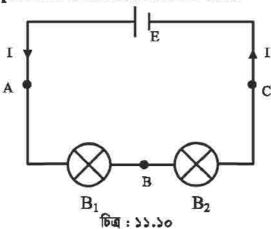
এছাড়া যে সকল পদার্থের আপেক্ষিক রোধের মান তূলনামূলকভাবে বেশি তাদেরও বহুবিধ ব্যবহার রয়েছে। উদাহরণ হিসেবে নাইক্রোম তারের কথাই ধরা যাক। নাইক্রোমের আপেক্ষিক রোধ এবং গলনাজ্ঞ্ক তামার তূলনায় অনেক বেশি। উচ্চ আপেক্ষিক রোধের কারণেই নাইক্রোম তারের মধ্য দিয়ে তড়িৎ প্রবাহিত হলে প্রচূর তাপ উৎপন্ন হয়। নাইক্রোমের এ ধর্মের কারণেই বৈদ্যুতিক কেটলিতে পানি খুব দুত গরম হয়। আমরা বাড়িতে যে সকল বৈদ্যুতিক বাল্প ব্যবহার করি তাদের ফিলামেন্ট টাংস্টেন দ্বারা তৈরি হয়। টাংস্টেনের উচ্চ আপেক্ষিক রোধ ও গলনাজ্ঞের কারণে এটি বৈদ্যুতিক শক্তিকে খুব সহজে আলোকশক্তিতে রূপান্তরিত করতে পারে।

পরিবাহকত

রোধের বিপরীত রাশি হলো পরিবাহিতা, তেমনি আপেক্ষিক রোধের বিপরীত রাশিকে পরিবাহকত্ব বলে। পরিবাহকত্বকে ত অক্ষর দ্বারা প্রকাশ করা হয়। এর মান পরিবাহীর উপাদান ও তাপমাত্রার উপর নির্ভরশীল।

মনে করি, একটি পরিবাহীর উপাদানের আপেক্ষিক রোধ ho

সুতরাং, ঐ পরিবাহীর উপাদানের পরিবাহকত্ব ত হবে–

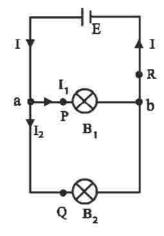

$$\sigma = \frac{1}{\rho}$$

যেহেতু ρ –এর একক Ω m, সুতরাং σ –এর একক হলো $(\Omega$ m) $^{-1}$ ।

গাণিতিক উদাহরণ ১১.8। একটি বৈদ্যুতিক হিটারে ব্যবহৃত নাইক্রোম তারের আপেক্ষিক রোধ $100 \times 10^{-8} \, \Omega \, \mathrm{m}$ । $15 \, \mathrm{m}$ লম্বা এবং $2.0 \times 10^{-7} \, \mathrm{m}^2$ প্রস্থাচ্ছেদের ক্ষেত্রফলবিশিফ তারের রোধ কত হবে ? আমরা জানি ,

$$R=
ho rac{L}{A}$$
 এখানে,
$$=rac{(100 imes10^{-8}~\Omega~\mathrm{m})(15~\mathrm{m})}{2.0 imes10^{-7}~\mathrm{m}^2}$$
 তারের প্রস্থচ্ছেদের ক্ষেত্রফল, $A=2.0 imes10^{-7}~\mathrm{m}^2$ তারের দৈর্ঘ্য, $L=15~\mathrm{m}$ রোধ , $R=?$

১১.১০ শ্রেণি এবং সমান্তরাল বর্তনী তৈরি ও ব্যবহার Series and parallel circuits and their uses



শ্ৰেণি বৰ্তনী

যে বর্তনীতে তড়িৎ উপকরণগুলো পরপর সাজানো থাকে তাকে শ্রেণি বর্তনী বলে। ১১.১০ চিত্রে কোষ E, দুইটি বাস্ত্র B_1 , B_2 পরপর সাজিয়ে শ্রেণি বর্তনী তৈরি করা হয়েছে। যেহেতু এই বর্তনীতে একটি মাত্র পথ রয়েছে, তাই এর সর্বত্র একই প্রবাহ চলবে। এখন যদি একটি খ্যামিটারকে A, B, বা C কিন্দুতেও সংযোগ দেওয়া যায় তাহলেও তড়িৎ প্রবাহের একই মান পাওয়া যাবে।

বিরে বাড়িতে বা বিভিন্ন অনুষ্ঠানের আলোকসজ্জায় যে সকল ছোট ছোট বাতি ব্যবহার করা হয় এগুলো শ্রেণিবস্থভাবে সংযুক্ত করা হয়। আমরা টর্চ লাইটে একাধিক ব্যাটারিকে শ্রেণিতে সংযুক্ত করে ভোল্টেন্ড বৃদ্ধি করে থাকি। তড়িৎ প্রবাহ পরিমাশের জন্য অ্যামিটারকে বর্তনীতে শ্রেণিতে যুক্ত করা হয়।

সমাস্তরাল বর্তনী

ধরা যাক বর্জনীর মোট প্রবাহ I। এই প্রবাহ a কিপুতে এসে পুইটি ভাগে বিভক্ত হয়। তড়িৎ প্রবাহের একটি জংশ I_I যায় প্রথম বাল্প B_1 দিয়ে এবং বাকী জংশ I_2 যায় দিতীয় বাল্প B_2 দিয়ে। b কিপুতে এসে প্রবাহ পুইটি একত্রিত হয়ে পুনরায় I প্রবাহ গঠন করে। P, Q এবং R কিপুতে ভ্যামিটারের সাহাব্যে তড়িৎ প্রবাহ পরিমাপ করলে দেখা যাবে,

 $I = I_1 + I_2$

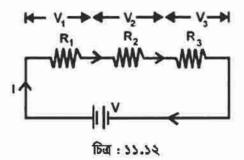
এখানে বর্তনীর মূল ভড়িৎপ্রবাহ I

অর্থাৎ, সমান্তরাল বর্তনীতে প্রত্যেক সমান্তরাল শাখায় প্রবাহিত স্বতনত্ত তড়িৎ প্রবাহসমূহের যোগকল বর্তনীর মূল প্রবাহের সমান।

আমরা বাড়িতে বা অঞ্চিসে যে সকল বৈদ্যুতিক উপকরণ যেমন— বাতি, ক্যান ইত্যাদি ব্যবহার করি এগুলো এসি মেইন লাইনের সাথে সমান্তরালভাবে সংযুক্ত করা হয়। সমান্তরালভাবে সংযোগের ফলে প্রত্যেকটি উপকরণ একই ভোল্টেজ সরবরাহ পায়। কিন্তু উপকরণগুলো ভিন্ন ভিন্ন প্রবাহ গ্রহণ করে।

১১.১১ তুল্যরোধ এবং বর্তনীতে তুল্যরোধ নির্ণয়

Equivalent resistance and determination of equivalent resistance in circuit


অনেক সময় বিভিন্ন প্রয়োজনে একাধিক রোধকে একত্রে ব্যবহার করতে হয়। একাধিক রোধকে একত্রে সংযোগ করাকেই রোধের সন্নিবেশ বলে।

জুশ্যরোশ: রোধের কোনো সন্নিবেশের পরিবর্তে যে একটি মাত্র রোধ ব্যবহার করলে বর্তনীর প্রবাহমাত্রা ও বিভব পার্থক্যের কোনো পরিবর্তন হয় না, তাকে ঐ সন্নিবেশের তুল্য রোধ বলে।

রোধের সন্নিবেশ দুই ধরনের হতে পারে, যথা– শ্রেণি সন্নিবেশ ও সমান্তরাল সন্নিবেশ।

রোধের শ্রেণি সন্নিবেশ

১১.১২ চিত্রে রোধক R_I , R_2 এবং R_3 শ্রেণিবন্ধভাবে সংযুক্ত আছে। রোধগুলো পর্যায়ক্তমে একটির পর অন্যটি সংযুক্ত করা হয়েছে। এক্ষেত্রে প্রত্যেকটি রোধের মধ্য দিয়ে একই মানের তড়িৎ প্রবাহ I প্রবাহিত হচ্ছে। এখন আমরা শ্রেণি সন্নিবেশে সংযুক্ত এই তিনটি রোধের ত্ল্যু রোধ নির্ণয় করবো।

ও'মের সূত্র থেকে আমরা জানি,

 R_I রোধের দুই প্রান্তের বিভব পার্থক্য, $V_i=IR_i$

 R_2 রোধের দুই প্রাম্ভের বিভব পার্থক্য, $V_2=IR_2$

 R_3 রোধের দুই প্রান্তের বিভব পার্থক্য, $V_3=I\!R_3$

সবগুলো রোধের দুই প্রান্তের বিভব পার্থক্য অর্থাৎ সন্নিবেশের দুই প্রান্তের বিভব পার্থক্য 🗸 হলে

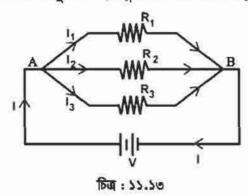
$$V = V_1 + V_2 + V_3$$

$$= IR_1 + IR_2 + IR_3$$

$$= I(R_1 + R_2 + R_3)$$
(11.5)

এখন R_I , R_2 ও R_3 মানের রোধ তিনটিকে যদি R_s মানের এমন একটি রোধ দ্বারা প্রতিস্থাপন করা হয় যে, এতে বর্তনীতে একই প্রবাহ I চলে এবং রোধগুলোর দুই প্রান্থের বিশুব পার্ষক্য V অপরিবর্তিত থাকে তাহলে R_s ই হবে এই সন্নিবেশের ভূগ্য রোধ।

তুশ্যরোধের ক্ষেত্রে
$$V=IR_s$$
 (11.6) সমীকরণ তুশনা করে পাই,


$$IR_{S} = I(R_1 + R_2 + R_3)$$

 $R_S = R_1 + R_2 + R_3$

তিনটি রোধের পরিবর্তে যদি $_{
m II}$ সংখ্যক রোধ শ্রেণি সন্নিবেশে যুক্ত থাকে, তা হলে তুল্য রোধ $R_{_{
m S}}$ হবে

$$R_S = R_1 + R_2 + R_3 + \dots + R_n$$

অর্থাৎ শ্রেণি সন্নিবেশে সংযুক্ত রোধগুলোর তুল্যরোধের মান সন্নিবেশে অস্তর্ভুক্ত বিভিন্ন রোধের মানের যোগফলের সমান। শ্রেণি সন্নিবেশে তুল্যরোধের মান আলাদা আলাদা প্রত্যেকটি রোধের মানের চেয়ে বড়।

সমান্তরাল সন্নিবেশ: কতকপূলো রোধ যদি এমনভাবে সংযুক্ত করা হয় যে, সবকয়টি রোধের একপ্রান্ত একটি সাধারণ বিন্দু A-তে এবং অপর প্রান্তগূলো অন্য একটি সাধারণ বিন্দু B-তে সংযুক্ত থাকে এবং প্রত্যেকটি রোধের দুই প্রান্তে একই বিভব পার্থক্য বজায় থাকে, তবে রোধগুলোর এই সন্নিবেশকে সমান্তরাল সন্নিবেশ বলা হয়।

১১.১৩ চিত্রে তিনটি রোধক R_1 , R_2 এবং R_3 সমান্তরাল সন্নিবেশে সংযুক্ত করা হয়েছে। এক্ষেত্রে তিনটি রোধের দূই প্রান্তে একই বিভব পার্থক্য V বন্ধায় আছে। রোধের মানের বিভিন্নভার জন্য ভানের প্রত্যেকের মধ্য দিয়ে আলাদা মানের তড়িৎ প্রবাহিত হচ্ছে। এক্ষেত্রে বর্তনীর মূল প্রবাহ I, A -সংযোগ কিদ্তে এসে তিনটি ভাগে বিভক্ত হয় এবং পুনরায় B কিদ্তে এসে মিলিভ হয়। ধরা যাক, R_1 , R_2 এবং R_3 রোধের মধ্য দিয়ে প্রবাহিত ভড়িৎ প্রবাহের মান যথাক্রমে I_1 , I_2 এবং I_3 । সূতরাং সমান্তরাল পথগুলোর প্রবাহ I_1 , I_2 এবং I_3 —এর যোগফল সংযোগ কিদু A -এর প্রবাহ I এর সমান। অর্থাৎ

$$\therefore I = I_1 + I_2 + I_3 \tag{11.7}$$

এক্ষেত্রে, প্রত্যেকটি রোধের দুই প্রাম্ভের বিভব পার্ধক্য 🗸 হওয়ায় ও'মের সূত্র প্রয়োগ করে আমরা পাই,

<u>১৮৮</u> পদার্থবিজ্ঞান

$$I_1=rac{V}{R_1}$$
 , $I_2=rac{V}{R_2}$ এবং $I_3=rac{V}{R_3}$

(11.7) নং সমীকরণে I_1 , I_2 এবং I_3 –এর মান বসিয়ে পাই,

$$I = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}$$

$$= V(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})$$
(11.8)

এখন R_1 , R_2 ও R_3 মানের রোধ তিনটিকে যদি R_P মানের এমন একটি রোধ দ্বারা প্রতিস্থাপন করা হয় যে, এতে বর্তনীতে একই প্রবাহ I চলে এবং রোধগুলোর দুই প্রান্তের বিভব পার্থক্য V অপরিবর্তিত থাকে, তাহলে R_P ই হবে ঐ সিন্নিবেশের তুল্য রোধ।

$$I = \frac{V}{R_p} \tag{11.9}$$

(11.8) ও (11.9) সমীকরণ তুলনা করে পাওয়া যায়,

$$\frac{V}{R_P} = V(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})$$

$$\frac{1}{R_P} = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})$$

তিনটি রোধের পরিবর্তে যদি n সংখ্যক রোধ সমান্তরাল সন্নিবেশে যুক্ত থাকে, তাহলে তুল্যরোধ R_P কে নিম্নুলিখিত ভাবে প্রকাশ করা যায়।

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
 (11.10)

অর্থাৎ সমান্তরাল সন্নিবেশে সংযুক্ত প্রত্যেকটি রোধের বিপরীত রাশির সমষ্টি তুল্যরোধের বিপরীত রাশির সমান। গাণিতিক উদাহরণ ১১.৬ : $5~\Omega$ এবং $10~\Omega$ মানের দুইটি রোধ আলাদাভাবে শ্রেণি এবং সমান্তরাল সন্নিবেশে সংযুক্ত করলে উভয় ক্ষেত্রে তুল্য রোধের মান নির্ণয় কর। আমরা জানি,

$$R_S = R_1 + R_2$$

$$= 5 \Omega + 10 \Omega$$

$$= 15 \Omega$$

আবার,

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_P} = \frac{1}{5\Omega} + \frac{1}{10\Omega}$$

$$= \frac{2+1}{10}\Omega^{-1}$$

$$= \frac{3}{10}\Omega^{-1}$$

$$R_P = 3.33 \Omega$$

উ:
$$R_S = 15 \Omega$$
 এবং $R_P = 3.33 \Omega$

এখানে, প্রথম রোধ, $R_I=5~\Omega$ দ্বিতীয় রোধ, $R_2=10~\Omega$ শ্রেণি সমবায়ে তুল্য রোধ, $R_S=?$ সমান্তলাল সমবায়ে তুল্য রোধ, $R_P=?$

১১.১২ তড়িৎ ক্ষমতা

Electric power

যখন কোনো পরিবাহীর দুই প্রান্তে বিভব পার্থক্য প্রয়োগ করা হয়, তখন ঐ পরিবাহীতে তড়িৎপ্রবাহের সৃষ্টি হয়। এর ফলে কাজ সম্পন্ন হয় এবং ইলেকট্রনগুলো শক্তি অর্জন করে। এই তড়িৎশক্তি বর্তনীর প্রকৃতি অনুযায়ী বিভিন্ন প্রকার শক্তিতে যেমন— তাপ, আলো, যান্ত্রিকশক্তি ইত্যাদিতে রূপান্তরিত হতে পারে।

ধরা যাক, AB, R রোধের একটি পরিবাহী এর মধ্য দিয়ে t সময়ে Q পরিমাণ আধান প্রবাহিত হয় এবং A ও B বিন্দুর বিভব পার্থক্য V। আমরা জানি যদি, কোনো পরিবাহির দুই প্রান্তের বিভব পার্থক্য 1 ভোল্ট হয় এবং এর মধ্য দিয়ে 1 কুলন্দ্র আধান প্রবাহিত হয়, তখন কৃত কাজের পরিমাণ হয় তথা ব্যয়িত শক্তির পরিমাণ হয় 1 জুল। সুতরাং পরিবাহীর মধ্য দিয়ে Q কুলন্দ্র আধান পরিবাহিত হলে কৃত কাজ VQ জুল।

সুতরাং, ব্যয়িত শক্তি তথা রূপান্তরিত মোট শক্তির পরিমাণ

আবার তড়িৎপ্রবাহ,

ও'মের সূত্র ব্যবহার করে এ সম্পর্ককে নিম্নোক্তভাবেও প্রকাশ করা যায়।

$$\therefore W = VIt = I^2Rt = \frac{V^2}{R}t \quad \text{sgr} \tag{11.12}$$

তড়িৎ ক্ষমতা

আমরা বাড়ি ও কলকারখানায় যে সকল বৈদ্যুতিক যন্দ্রপাতি ব্যবহার করি তাদের প্রত্যেকটির গায়ে সাধারণত কী পরিমাণ ভোল্টেজে এটি চলে তা এবং এর তড়িৎ ক্ষমতা ওয়াট লেখা থাকে। আমরা জানি কাজ সম্পাদনের হার তথা শক্তি রূপান্তরের হারকে ক্ষমতা বলে। সূতরাং, কোনো বৈদ্যুতিক যন্দেত্র তড়িৎশক্তি অন্যান্য শক্তিতে রূপান্তরিত হয়, তাই হলো এ যন্দেত্রর ক্ষমতা P।

অর্থাৎ, ক্ষমতা =
$$\frac{\overline{\phi}$$
ত কাজ $}{\overline{\sigma}$ সময় $}=\frac{\overline{g}$ পান্তরিত শক্তি $}{\overline{\sigma}$ সময় $\therefore P=\frac{W}{t}$ (11.13)

সমীকরণ (11.11) থেকে W – এর মান বসিয়ে পাই,

$$P = VI \tag{11.14}$$

ও মের সূত্র প্রয়োগ করে P কে V,I এবং R –এর সাহায্যে নিম্নোক্তভাবে প্রকাশ করা যায়–

$$P = VI = I^2 R = \frac{V^2}{R} \tag{11.15}$$

আমরা জানি ক্ষমতার একক হল ওয়াট (W)। তড়িৎ শক্তি হিসাবের সময় সাধারণত ওয়াটের পরিবর্তে $kW,\ MW$ ইত্যাদি ব্যবহার করা হয়। $1kW=10^3W$ এবং $1MW=10^6W$ ।

আমরা বাসাবাড়িতে যে সকল বৈদ্যুতিক যশ্ত্রপাতি ব্যবহার করি তার মধ্যে কয়েকটির ক্ষমতা উল্লেখ করা হলো। বৈদ্যুতিক বাল্বের ক্ষমতা 40, 60, 100 W হয়ে থাকে। বৈদ্যুতিক পাখার ক্ষমতা সাধারণত 65-75 W হয়।

টেলিভিশনের ক্ষমতা সাধারণত 60-70 W। আজকাল আমরা যে সকল এনার্জি সেভিং বাল্প ব্যবহার করি এগুলোর ক্ষমতা সাধারণত 11-30 W হয়।

এছাড়াও আমরা বাসায় ফ্রিন্স, ইটার, ইসিত্র, ব্যবহার করি এদের ক্ষমতা অনেক বেশি। তাই পিক আওয়ারে এসব যদত্রপাতি ব্যবহার না করা ভালো।

তড়িৎশক্তি ব্যয়ের হিসাব

আমরা বাসাবাড়ি, দোকান, কলকারখানায় যে তড়িৎ শক্তি ব্যবহার করি তার জন্য মূল্য পরিশোধ করতে হয়। তড়িৎ শক্তি ব্যবহার করে এমন প্রত্যেক বাড়িতে একটি বৈদ্যুতিক মিটার থাকে যা বাড়িতে ব্যয়িত তড়িৎ শক্তির হিসাব রাখে। বিশ্বব্যাপী তড়িৎ সরবরাহ প্রতিষ্ঠান কিলোওয়াট–ঘণ্টা (kWh) একককে ব্যয়িত তড়িৎশক্তির পরিমাণ নির্ধারণ করে। আমরা এই কিলোওয়াট–ঘণ্টা একককে বোর্ড অব ট্রেড ইউনিট বা সংক্ষেপে ইউনিট বলে থাকি। বৈদ্যুতিক মিটারে দুই সময়ের রিডিং–এর পার্থক্য থেকে ঐ সময়ের ব্যবহৃত তড়িৎ–শক্তির পরিমাণ পাওয়া যায়।

যেহেতু ক্ষমতা
$$P=rac{$$
কৃত কাজ $}{$ সময় $}=rac{$ রূপান্তরিত শক্তি $}{$ সময় $}$, $P=rac{W}{t}$ $\therefore W=Pt$

যদি P=1 kW এবং t=1h হয়, তখন W=1 kW \times 1h=1 kWh হয়। অর্থাৎ এক কিলোওয়াট ক্ষমতাসম্পন্ন কোনো তড়িৎ যদত্র এক ঘণ্টা ধরে কাজ করলে যে পরিমাণ তড়িৎশক্তিকে অন্য শক্তিতে রূপান্তর করে বা ব্যয় করে তাকে এক কিলোওয়াট—ঘণ্টা বা এক ইউনিট বলে।

নিচ্ছে কর : 1kWh কে জুলে প্রকাশ কর।

 $1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$

ক্ষমতাকে ওয়াটে এবং সময়কে ঘণ্টায় প্রকাশ করলে, ব্যয়িত তড়িৎশক্তি W –কে লেখা যায়–

$$W = Pt$$
 Wh

একে 1000 দিয়ে ভাগ করলে ব্যয়িত শক্তি kWh এ পাওয়া যাবে।

নিচ্ছে কর: তুমি যে ঘরে বাস করো, সেই ঘরে যদি বৈদ্যুতিক সংযোগ থাকে, তাহলে ঐ ঘরে কী কী বৈদ্যুতিক উপকরণ আছে, তার একটি তালিকা তৈরি কর। এর থেকে ঐ ঘরের জন্য এক মাসের সম্ভাব্য ব্যয়িত শক্তির পরিমাণ নির্ণয় কর।

গাণিতিক উদাহরণ ১১.৭ : একটি বাল্পের গায়ে 100~W-220~V লিখা আছে। এর ফিলামেন্টের রোধ কত ? এর মধ্যদিয়ে কী পরিমাণ তড়িৎ প্রবাহিত হবে ? আমরা জানি,

$$P=rac{V^2}{R}$$
 বিভব পার্থক্য, $V=220~{
m V}$ ক্ষমতা, $P=100~{
m W}$ রোধ, $R=?$ তড়িৎ প্রবাহ, $I=?$

জাবার,
$$P = VI$$

$$I = \frac{P}{V}$$

$$= \frac{100\text{W}}{220\text{V}}$$

$$= 0.455 \text{ A}$$

উ: 484 Ω এবং 0.455 A

১১.১৩ তড়িতের সিস্টেম লস এবং লোড শেডিং

System loss and load sheding

আমরা জানি, দেশের বিভিন্ন স্থানে অবস্থিত বিদ্যুৎ পাওয়ার প্লান্টগুলোতে বিদ্যুৎ শক্তি উৎপাদিত হয়। উৎপন্ন এই বিদ্যুৎকে প্রয়োজন অনুযায়ী বিভিন্ন স্থানে সঞ্চালন করতে হয়। বিদ্যুৎ সঞ্চালন ব্যবস্থার মাধ্যমে উৎপাদিত বিদ্যুৎ শক্তিকে বিদ্যুৎ কেন্দ্র থেকে বিভিন্ন স্থানে অবস্থিত বিদ্যুৎ সাবস্টেশনে স্থানান্তর করা হয়। এরপর বিভিন্ন সাবস্টেশন থেকে পুনরায় বিদ্যুৎ বিতরণ ব্যবস্থার মাধ্যমে বিদ্যুৎ শক্তিকে গ্রাহক পর্যায়ে বিতরণ করা হয়।

বিদ্যুৎ কেন্দ্রে বিদ্যুৎ শক্তি নিমু ভোন্টেজে উৎপাদন করা হয়। পরে এই ভোন্টেজকে স্টেপ আপ ট্রান্সফর্মারের সাহায্যে উচ্চ ভোন্টেজে রূপান্তরিত করা হয়। বিদ্যুৎ সঞ্চালনের জন্য যে সকল পরিবাহী তার ব্যবহার করা হয় তাদের একটি নির্দিষ্ট পরিমাণ রোধ থাকে। ফলে এই রোধকে অতিক্রমের জন্য তড়িৎশক্তির একটি অংশ তাপে রূপান্তরিত হয়। অর্থাৎ শক্তির লস বা ক্ষয় হয়। এই লসই হলো তড়িতের সিস্টেম লস। উচ্চ ভোন্টেজে বিদ্যুৎ সঞ্চালনের ফলে বিদ্যুৎ গ্রিড তথা পরিবাহীর রোধের কারণে যে লস হয় তা অনেকাংশে কমে যায়। একটি নির্দিষ্ট পরিমাণ বিদ্যুৎশক্তির জন্য, উচ্চ ভোন্টেজে বিদ্যুৎ সঞ্চালনের ফলে তড়িৎ প্রবাহের মান কম হয়। এর ফলে রোধজনিত লসের পরিমাণও কমে যায়। উদাহারণ হিসেবে বলা যায়— যদি সঞ্চালন লাইন ভোন্টেজকে দশ গুণ বৃন্ধি করা হয়, তখন তড়িৎ প্রবাহের মান এক দশমাংশ হয়। যার ফলে বিদ্যুৎ গ্রিডের I^2R লসের পরিমাণ একশত ভাগের এক ভাগ হয়। অর্থাৎ সঞ্চালন লাইনের ভোন্টেজকে বৃন্ধি করে সিস্টেম লস কমানো যেতে পারে।

লোড শেডিং

প্রত্যেকটি বিদ্যুৎকেন্দ্র একটি নির্দিষ্ট পরিমাণ বিদ্যুৎশক্তি উৎপাদন করে। সবগুলো বিদ্যুৎ কেন্দ্র থেকে উৎপাদিত বিদ্যুৎ জাতীয় গ্রিছে যোগ হয়। বিভিন্ন এলাকার চাহিদা অনুযায়ী বিদ্যুৎ উপকেন্দ্র জাতীয় গ্রিছ থেকে বিদ্যুৎ সংগ্রহ করে। পরবর্তীতে বিদ্যুৎ উপকেন্দ্র গ্রাহক পর্যায়ে এ বিদ্যুৎকে পৌঁছে দেয় বা বিতরণ করে। কোনো নির্দিষ্ট এলাকার বিদ্যুতের চাহিদা উৎপাদন বা সরবরাহের তুলনায় বেশি হলে তখন বিদ্যুৎ উপকেন্দ্রের পক্ষে চাহিদা মেটানো সম্ভব হয়ে উঠে না। তখন বাধ্য হয়ে উপকেন্দ্র কর্তৃপক্ষ বিতরণ ব্যবস্থার নির্দিষ্ট কিছু এলাকায় কিছু সময়ের জন্য বিদ্যুৎ বিতরণ কশ্ব করে দেয় বা বিদ্যুৎ সংযোগ বিচ্ছিন্ন করে। একে লোড শেডিং বলে। আবার উপকেন্দ্র যখন প্রয়োজনীয় চাহিদা অনুযায়ী সরবরাহ পায় তখন পুনরায় ঐ এলাকায় বিদ্যুৎ সরবরাহ করে।

যদি লোড শেডিং এক নাগাড়ে কয়েক ঘন্টা স্থায়ী হয় তখন গ্রাহক পর্যায়ে লোডশেডিংকে সহনীয় করতে কর্তৃপক্ষ চক্রাকারে বিভিন্ন এলাকায় লোড শেডিং করে থাকে।

১১.১৪ তড়িতের নিরাপদ ও কার্যকর ব্যবহার

Safe and effective use of electricity

তড়িতের বিপজ্জনক দিকসমূহ: তড়িৎ আমাদের দৈনন্দিন জীবনে অত্যন্ত গুরত্বপূর্ণ ভূমিকা পালন করে। তড়িৎ আমাদের যেমন অনেক উপকারে আসে তেমনি এর অসতর্ক ব্যবহার অত্যন্ত বিপজ্জনক হতে পারে। বৈদ্যুতিক যন্ত্রপাতি এবং বর্তনীতে যেকোনো ধরনের ত্র্টি বৈদ্যুতিক শক্ দিতে পারে এবং অগ্নিকান্ড ঘটাতে পারে। শরীরের মধ্য দিয়ে বিদ্যুৎ প্রবাহের ফলে মানুষের মৃত্যুরও ঝুঁকি রয়েছে। তড়িৎশক্তির ব্যবহার নিমুবর্ণিত তিনটি কারণে বিপজ্জনক হতে পারে।

- ১. অন্তরকের ক্ষতিসাধন;
- ২. ক্যাবলের অতি উত্তপ্ত হওয়া;
- ৩. আর্দ্র অকম্থা।

১. জন্তরকের ক্ষতিসাধন: বৈদ্যুতিক যন্ত্রগাতিকে কাজ করতে হলে তাদেরকে ভোন্টেজ উৎসের সাথে দুইটি পরিবাহী তার ঘারা সংযুক্ত করে বর্তনী সম্পূর্ণ করতে হয়। এই দুইটি তারকে আমরা বলি জীবন্ত (Live) এবং নিরপেক্ষ (Neutral) তার। এ সকল পরিবাহী তার সাধারণত রাবার ঘারা অন্তরিত অবস্থায় থাকে। দুইটি তারকে পরে একত্রিত অবস্থায় পিভিসি বা রাবার ঘারা আবৃত করে ক্যাবল তৈরি করা হয়।

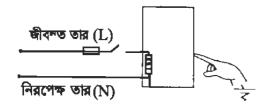
সময় এবং ব্যবহার এর সাথে সাথে এ সকল অন্তরক পদার্থ ক্ষতিগ্রস্ত হয়। যেমন আমরা বাড়িতে যে বৈদ্যুতিক ইস্তিত্র

ব্যবহার করি এর ক্যাবল ব্যবহারের সময় বেঁকে যায় এবং মোচড় খায়। এতে করে অভ্যন্তরস্থ অন্তরক ব্যবস্থা ফেটে এবং ভেঙে যেতে পারে। ফলে পরিবাহী তার উন্মৃত্ত হয়ে যায়। এখন কোনোভাবে যদি জীবন্ত তার শরীরের সংস্পর্শে আসে তখন মারাত্মক বৈদ্যুতিক শক্ দ্বারা আক্রান্ত হতে হয়। এছাড়া অন্তরক ব্যবস্থা ক্ষতিগ্রস্ত হওয়ার ফলে জীবন্ত তার এবং নিরপেক্ষ তার পরস্পরের সংস্পর্শে আসলে শর্ট সার্কিটের সৃষ্টি হবে এবং অগ্নিকান্ড ঘটতে পারে।

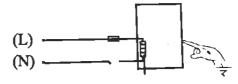
২. ক্যাবলের অতি উন্তৰ্গত হওয়া: যখন অস্বাভাবিকভাবে বেশি পরিমাণ তড়িৎপ্রবাহ বৈদ্যুতিক ক্যাবল বা পরিবাহী তার দিয়ে প্রবাহিত হয় তখন এটি উন্তৰ্গত হয়। যেমন— যখন বৈদ্যুতিক পাখার মোটর অতি উন্তৰ্গত হয় এবং গলে যায়, ফলশুতিতে জীবন্ত তার এবং নিরপেক্ষ তার একট্রিত হয়ে যায় এবং

চিত্র ১১.১৫: বিপজ্জনক অবস্থায় হেয়ার দ্রায়ার

অস্বাভাবিকভাবে উচ্চমানের তড়িৎ প্রবাহিত হয়। এছাড়া অনেক সময় আমরা সকেটে মান্টিপ্লাগ ব্যবহার করে অনেকগুলো বৈদ্যুতিক যশ্ত্রপাতিকে একসজো সংযোগ দেই। এর ফলে সকেটের অত্যন্তরস্থ পরিবাহী তার মেইন লাইন থেকে যে পরিমাণ তড়িৎ গ্রহণ করে তা এই পরিবাহী তার নিরাপদে যে পরিমাণ তড়িৎ প্রবাহ গ্রহণ করতে পারে তার চেয়ে অনেক বেশি হয়। এর ফলে ক্যাবল তার অত্যধিক উত্তন্ত হয়ে উঠে, অন্তরক ব্যবস্থা গলে যায় এবং অগ্নিকান্ড ঘটায়।

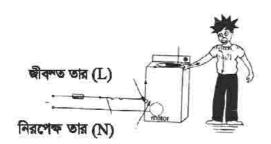

৩. আর্দ্র অকশা: আর্দ্র অকশায় অনেক বৈদ্যুতিক দুর্ঘটনা ঘটে থাকে। আমরা জানি, পানির মধ্য দিয়ে তড়িৎ প্রবাহিত হতে পারে। এ কারণে কোনো বৈদ্যুতিক সরঞ্জামের যে সকল অংশ অন্তরিত অকশায় থাকে না সেগুলো সকসময় শুষ্ক রাখতে হবে। অন্যথায় বৈদ্যুতিক শর্টসার্কিট এবং শক্ ঘারা আক্রান্ত হওয়ার ঝুঁকি থাকবে। উদাহরণ হিসেবে বলা যায়, কোনো হেয়ার দ্রায়ারকে ভেজা সিচ্চে রেখে দেওয়া অত্যন্ত বিপজ্জনক। যদি হেয়ার দ্রায়ারের তার উন্মুক্ত থাকে কিংবা তারের অন্তরক ব্যক্তথা ক্ষতিগ্রুত হয়ে যায়, তখন যিনি সিজ্ক ব্যবহার করছেন তিনি বৈদ্যুতিক শক্ ঘারা আক্রান্ত হতে পারেন। এছাড়াও ভেজা হাত ঘারা কোনো বৈদ্যুতিক সুইচ অন্ বা অফ্ করাও বিপজ্জনক।

ভড়িতের নিরাপদ ব্যবহার

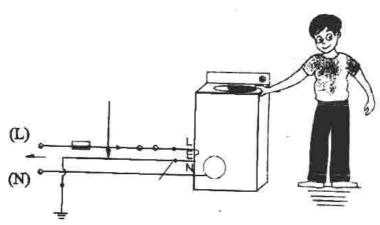

পূর্ববর্তী অনুচ্ছেদে তোমরা তড়িৎ ব্যবহারের বিপচ্জনক দিক সম্পর্কে অবহিত হয়েছ। বর্তমান অনুচ্ছেদে আমরা বাড়িতে তড়িতের নিরাপদ ব্যবহার সম্পর্কে জানব।

বাড়িতে তড়িৎ ব্যবহারের সময় যে সকল নিরাপন্তামূলক ব্যবস্থা গ্রহণ করা প্রয়োচ্ছন এপুলো হলো:

- ১. সার্কিট ব্রেকার
- ২. ফিউজ
- ৩. সুইচের সঠিক সংযোগ
- ৪. ভুসংযোগ তার
- ১. সার্কিট ব্রেকার: নিরাপস্থামূলক কৌশল হিসাবে সার্কিট ব্রেকার ব্যবহার করা হয়। এটি সাধারণত বাড়ির সন্মুখ দরজার আশেপাশে স্থাপন করা হয়। যখন কোনো বর্তনীতে নির্দিশ্ট মানের অধিক ভড়িৎ প্রবাহিত হয় তখন সার্কিট ব্রেকার বর্তনীর ভড়িৎ সরবরাহ কম্ম করে দেয়। সার্কিট ব্রেকার বাড়ির কোনো নির্দিশ্ট অংশের ভড়িৎ সরবরাহ বিচ্ছিত্র করে। বর্তনীতে সার্কিট ব্রেকার না থাকলে অভিরিক্ত ভড়িৎ প্রবাহের জন্য বাড়ির ভড়িৎ সরক্ষাম বিনন্ট হয়ে যেতে পারে, এমনকি অগ্রিকান্ডও ঘটতে পারে।
- ২. ফিউজ: ফিউজ হলো একটি নিরাপন্তামূলক কৌশল। বৈদ্যুতিক বর্তনীতে অধিক তড়িৎপ্রবাহ প্রতিরোধের জন্য ফিউজ অন্তর্জুক্ত করা হয়। ফিউজটিকে সবসময় বৈদ্যুতিক ক্যাবলের জীবন্ত তারে সংযোগ দেওয়া হয়। একটি স্বন্ন দৈর্ঘ্যের চিকন তার ফিউজ হিসেবে ব্যবহার করা হয়। নির্দিন্ত মানের তড়িৎপ্রবাহ অপেকা বেশি তড়িৎ প্রবাহিত হলে ফিউজটি উন্তর্ণত হয় এবং গলে যায়। এতে বর্তনী বিচ্ছিত্র হয় এবং বৈদ্যুতিক যন্ত্রগাতি নন্ট হওয়ার হাত থেকে রক্ষা পায়। ফিউজের গায়ে নির্দিন্ত মানের তড়িৎপ্রবাহের উল্লেখ থাকে। কোনো বৈদ্যুতিক যন্ত্র বা সরস্কাম সর্বোচ্চ যে মানের তড়িৎপ্রবাহ বহন করতে পারে তার চেয়ে সামান্য বেশি তড়িৎপ্রবাহ বহনে সক্ষম এমন ফিউজ ব্যবহার করতে হবে। এতে করে ফিউজ পুড়ে গোলেও বৈদ্যুতিক সরক্ষামটি তড়িতায়িত হবে না। এছাড়াও ফিউজ পরিবর্তনের সময় বিদ্যুৎ সরব্রাহের মেইন সুইচ্ কন্ম করতে হবে।
- ৩. সুইচের সঠিক সংযোগ: সুইচের কাচ্চ হলো কোনো বৈদ্যুতিক বর্তনীকে সম্পূর্ণ করা অথবা বর্তনীকে বিচ্ছিন্ন করা। বর্তনীতে সুইচ লাগানোর সময় খেয়াল রাখতে হবে, এটি যেন জীবন্ত তারে সংযোগ দেওয়া হয়। এতে করে সুইচ কল্ম করা মাত্র উচ্চ বিভব উৎস থেকে বৈদ্যুতিক সরক্ষাম বিচ্ছিন্ন হবে [চিত্র ১১.১৬]। সুইচটিকে যদি ভূলবশত নিরপেক তারে সংযোগ দেওয়া হয়, তখন সুইচ কল্ম করার পরও বৈদ্যুতিক সরক্ষামটি জীবন্ত থাকবে [চিত্র ১১.১৭] এবং বৈদ্যুতিক শক্ষের খুঁকি বাড়বে।



চিত্র: ১১.১৬: সুইচের সঠিক সংযোগ



চিত্র ১১.১৭: সুইচের ভুল সংযোগ

৩. ভ্র্মথোগ ভার: সকল বৈদ্যুতিক সরজ্ঞাম বা উপকরণের বৈদ্যুতিক বর্তনী সম্পূর্ণ করার জন্য কমপক্ষে দুইটি ভারের দরকার। এগুলো হলো জীবন্ত (L) ও নিরপেক্ষ (N) ভার। জীবন্ত ভার বৈদ্যুতিক সরজ্ঞামে বৈদ্যুতিক শক্তি সরবরাহ করে। অগরদিকে নিরপেক্ষ ভারের মাধ্যমে ভড়িৎপ্রবাহ উৎসে ফিরে আসে এবং বর্তনী সম্পূর্ণ করে। নিরপেক্ষ ভারের বিশুব শূন্য। ভ্র্মথোগ ভার হলো নিমুরোধের ভার। এটি সাধারণত বৈদ্যুতিক সরজ্ঞামের ধাতব ঢাকনার (Casing) সাথে সংযুক্ত থাকে। বিভিন্ন কারণে বর্তনী ঝুটিযুক্ত থাকতে পারে। যেমন— যদি জীবন্ত ভার সঠিকভাবে সংযুক্ত না থাকে এবং ভা যদি বৈদ্যুতিক ষশ্লের ধাতব ঢাকনাকে স্পর্শ করে ভবে ব্যবহারকারী বৈদ্যুতিক শক ঘারা আক্রান্ত হতে পারেন। ধাতব ঢাকনাটি ভ্রমংযুক্ত অবস্থায় থাকলে এমনটি ঘটবে না। এক্ষেত্রে জীবন্ত ভার থেকে উচ্চমানের ভড়িৎপ্রবাহ থাতব ঢাকনা হয়ে ভ্রমংযোগ ভার দিয়ে মাটিতে চলে যাবে। ফলে ফিউজটি পুড়ে যাবে এবং ভড়িৎমন্তের বিদ্যুৎ সরবরাহ কম্ম হয়ে যাবে। বাড়িতে ব্যবহৃত ফ্রিজের নিরাপদ ব্যবহারের জন্য অবশ্যই ভ্রমংযোগ বা আর্থিং দেওয়া উচিৎ। ১১.১৮ চিত্রে ভ্রমংযোগ ভারবিহীন ভয়াশিং মেশিন কীভাবে বিগজ্জনক হতে পারে ভা ভূলে থরা হয়েছে।

চিত্র ১১.১৮: জুসন্মোগহীন ওয়াশিং মেশিন

চিত্র ১১.১৯ ভূসংবোগসহ ওয়াশিং মেশিন

এ ছাড়াও আজকাশ বিভিন্ন বহনযোগ্য যশত্রপাতিতে থ্রি পিন প্লাগ ব্যবহার করা হয়। এগুলোতে নিরাপন্তামূলক ব্যবস্থা হিসেবে ফিউজ সংযুক্ত থাকে। ফিউজটি ভড়িৎ যশত্রটিকে নিরাপদ রাখে।

অনুসন্ধান- ১১.১

বাসা বাড়ি উপযোগী তড়িৎ বর্তনী নকশা প্রণয়ন এবং ব্যবহার প্রদর্শন।

উদ্দেশ্য: শিক্ষার্থীরা বাসা বাড়িতে ব্যবহার উপযোগী তড়িৎ বর্তনীর নকশা প্রণয়ন করে এর বিভিন্ন অংশে এসি উৎসের ব্যবহার প্রদর্শন করতে পারবে।

কাজের ধারা :

- ১. কাব্দের শুরুতেই বৈদ্যুতিক ক্যাবলের জীবন্ত (L)এবং নিরপেক্ষ (N) তার অঙ্কন কর।
- ২. এবার এ দুইটি তারকে প্রধান ফিউজ বক্স, বৈদ্যুতিক মিটার এবং ডিস্ট্রিবিউশন বক্সের সঞ্চো পরপর সংযোগ দাও।
- ৩. ডিস্ট্রিবিউশন বক্সে মেইন সুইচ অঙ্কন কর।
- 8. ডিস্ট্রিবিউশন বঙ্গে দুইটি ফিউজ অজ্জন কর। ফিউজগুলোকে অবশ্যই L তারে সংযোগ দিতে হবে।
- ৫. এবার একটি ফিউজের সঙ্গো দুইটি বাতি, একটি ফ্যান সমান্তরালভাবে সংযোগ দিয়ে বর্তনী সম্পূর্ণ কর। প্রত্যেক বাতি ও ফ্যানের জন্য Lতারে আলাদা সুইচ অঙ্কন কর।
- ৬. অন্য ফিউজটি ব্যবহার করে টেলিভিশন সেট, ইস্ত্রি ইত্যাদির জন্য আলাদা আলাদা পাওয়ার সকেটে সংযোগ দাও।

নিছে কর:

তড়িৎ শক্তির অপচয় রোধ ও সংরক্ষণে সচেতনতা সৃষ্টির ছন্য পোস্টার অঞ্চন।

- ১. দোকান থেকে পোস্টার তৈরির জন্য পোস্টার পেপার সংগ্রহ কর।
- বিভিন্ন রঙের কলম ব্যবহার করে তড়িৎ শক্তির অপচয় রোধ ও সংরক্ষণে কী কী ব্যবস্থা গ্রহণ করা উচিৎ তা পোস্টারে লিখ।
- ৩. শিক্ষক সেরা পোস্টারটি নির্বাচন করবেন এবং পুরস্কারের ব্যবস্থা করবেন।

जनुशी ननी

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উত্তরের পাশে টিক $(\sqrt{})$ চিহ্ন দাও

- ১। যে সকল পদার্থের মধ্য দিয়ে খুব সহজেই তড়িৎ প্রবাহ চলতে পারে তাদেরকে কী বলে?
 - (ক) অপরিবাহী

(খ) কুপরিবাহী

(ঘ) অর্ধপরিবাহী

(ঘ) পরিবাহী

২। $2~\Omega, 3~\Omega$ ও $4~\Omega$ মানের তিনটি রোধ শ্রেণি সমবায়ের সংযুক্ত থাকলে তুল্য রোধের মান হবে-

(季) 8 Ω

(খ) 7 Ω

(গ) 9 Ω

- (ঘ) 20 Ω
- ৩। কোনো পরিবাহীর দুই প্রান্তের বিভব পার্থক্য 100~
 m V এবং তড়িৎ প্রবাহ মাত্রা 10~
 m A হলে এর রোধ কত ?
 - (ক) 1000Ω

(খ) 0.1 Ω

(গ) 10 Ω

- (ঘ) কোনটিই নয়
- ৪। বর্তনীতে বৈদ্যুতিক অবস্থা পরিমাপের জন্য ব্যবহার করা হয়
 - i. ভোল্টমিটার
 - ii. অ্যামিটার
 - iii. জেনারেটর

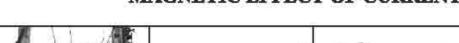
কোনটি সঠিক

ii ও i (ক)

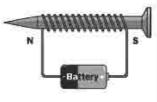
(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii


খ. সৃজনশীল প্রশ্ন

- ১। একটি বৈদ্যুতিক হিটারে ব্যবহৃত নাইক্রোম তারের দৈর্ঘ্য ও প্রস্থচ্ছেদের ক্ষেত্রফল যথাক্রমে $30~{
 m m}$ এবং $2{ imes}10^{-7}~{
 m m}^2$ । নাইক্রোমের আপেক্ষিক রোধ $100\times10^{-8}~{
 m \Omega}~{
 m m}$ । নাইক্রোম তারটিকে একই দৈর্ঘ্যের এবং প্রস্থচ্ছেদের ক্ষেত্রফল বিশিফ্ট তামার তার দ্বারা প্রতিস্থাপন করা হলো। তামার তারের আপেক্ষিক রোধ $1.7{ imes}10^{-8}~{
 m \Omega}~{
 m m}$ ।
 - (ক) রোধ কাকে বলে?
 - (খ) বৈদ্যুতিক হিটারে নাইক্রোম তার ব্যবহার করা হয় কেন?
 - (গ) ব্যবহৃত তামার তারের রোধ নির্ণয় কর।
 - (ঘ) তামার তার ব্যবহারের যৌক্তিকতা বিশ্লেষণ কর।
- ২। পড়ার সময় আলভি 220V-100 W এর একটি বাতি দৈনিক 3 ঘণ্টা করে অন্যদিকে তার ভাই আলিফ 220V 40 W একটি টেবিল ল্যাম্প দৈনিক 4 ঘণ্টা করে ব্যবহার করে। প্রতি ইউনিট বিদ্যুৎ শক্তির মূল্য 3.5 টাকা। ক. ও'মের সূত্রটি লিখ।
 - খ. নির্দিষ্ট তাপমাত্রা, উপাদান ও প্রস্থচ্ছেদের পরিবাহকের দৈর্ঘ্য ৫ গুণ বড় করলে রোধের কী পরিবর্তন হবে ব্যাখ্যা কর।
 - গ. আলিফের বাতির প্রবাহমাত্রা নির্ণয় কর।
 - ঘ. আর্থিক দিক বিবেচনায় আলভি ও আলিফের মধ্যে কে মিতব্যয়ী ? গাণিতিক যুক্তিসহ বিশ্লেষণ কর।

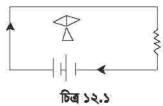

গ. সাধারণ প্রশ্ন

- ১। তড়িৎ প্রবাহ কাকে বলে?
- ২। তড়িৎ প্রবাহের প্রচলিত দিক এবং ইলেকট্রন প্রবাহের দিক কোনটি?
- ৩। পরিবাহী, অপরিবাহী এবং অর্ধপরিবাহী পদার্থ কাকে বলে?
- ৪। ও'মের সূত্রটি বিবৃত কর।
- ৫। দেখাও যে, V = IR।
- ৬। একটি ছক কাগজে I বনাম V লেখচিত্র অজ্ঞন কর।
- ৭। আপেক্ষিক রোধের সংজ্ঞা দাও।
- ৮। দেখাও যে, শ্রেণি সমবায়ে সংযুক্ত রোধগুলোর তুল্যরোধের মান সমবায়ের অন্তর্ভূক্ত বিভিন্ন রোধের মানের যোগ ফলের সমান।
- ৯। কী কী কারণে তড়িৎশক্তি ব্যবহার বিপজ্জনক হতে পারে?
- ১০। একটি বাসের হেড লাইটের ফিলামেন্টের 2.5~A তড়িৎ প্রবাহিত হয়। ফিলামেন্টের প্রান্ত্র্বয়ের বিভব পার্থক্য 12~V হলে এর রোধ কত?
- ১১। একটি শুষ্ক কোষের তড়িচ্চালক শক্তি $1.5~{
 m V}$ । $0.5~{
 m C}$ আধানকে সম্পূর্ণ বর্তনী ঘুরিয়ে আনতে কোষের ব্যয়িত শক্তির পরিমাণ নির্ণয় কর।
- ১২। স্থির এবং পরিবর্তী রোধ কাকে বলে?
- ১৩। তড়িচ্চালক শক্তি এবং বিভব পার্থক্য বলতে কী বোঝ?

দাদশ অধ্যান্ত ভড়িভের চৌম্বক ক্রিয়া MAGNETIC EFFECT OF CURRENT

তিড়িতের চৌম্বক প্রভাব বেমন আছে তেমনি চুম্বকের তড়িৎ প্রভাব আছে। এই দুই প্রভাবকে কাজে গাগিয়ে অনেক তড়িৎ বন্দ্রপাতি তৈরি করা হয়েছে। এই সব বন্দ্রপাতি আমাদের অনেক সমস্যার সমাধান করেছে, জীবনে অনেক আরাম আয়েস এনে দিরেছে, আমাদের জীবনমান উন্নত করেছে। এই অধ্যারে আমরা তাড়িতচুম্বক, তাড়িতচৌম্বক আবেশ, আবিষ্ট তড়িত্বাবহ ও আবিষ্ট তড়িতালক শক্তি, তড়িৎ মোটর, জেনারেটর, ট্র্যালফর্মার ইত্যাদির কার্যপ্রণালি ও ব্যবহার নিরে আলোচনা করব।]

এই অধ্যার পাঠ পেবে আমরা-


- ১। ডড়িৎ প্রবাহের চৌম্বক ক্রিয়া ব্যাধ্যা করতে পারব।
- ২। ভাড়িভচৌম্বৰ ভাবেশ ব্যাখ্যা করতে পারব।
- ৩। আবিষ্ট ভড়িৎপ্রবাহ ও আবিষ্ট ভড়িকাদক শক্তি ব্যাখ্যা করতে পারব।
- ৪। মটর ও জেনারেটরের মৃগনীতি ব্যাখ্যা করতে পারব।
- ৫। ট্রাষ্ট্রকর্মারের মৃশনীতি ব্যাখ্যা করতে পারব।
- ৬। স্টেপ আপ ও স্টেপ ডাউন ট্রালফর্মারের কার্যপ্রগালি ব্যাখ্যা করতে পারব।
- ৭। আমাদের জীবনে ভড়িভের নানারূপের ব্যবহার ও এর অবদানকে প্রশহনা করতে পারব।

১২.১ তড়িতের চৌম্বক ক্রিরা

Magnetic effect of current

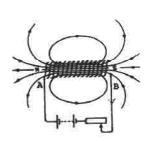
র্তমেরস্টেড তড়িতের চৌম্বক ক্রিয়া বা প্রভাব আবিক্কার করেন।

নিজে কর : পাশের চিত্রের মতো করে একটি বর্তনী তৈরি কর। তারের নিচে একটি কম্পাসকে এমনভাবে রাখ বেন এর কাঁটা উত্তর-দক্ষিণে মুখ করে থাকে। এবার সুইচ অন কর। কম্পাস কাঁটাটির কী ঘটছে?

সুইচ অন করে বর্তনীতে প্রবাহ চালনা করার সাথে সাথে কম্পাস কাঁটাটি একদিকে সরে যাচছে। তড়িৎপ্রবাহের দিক পরিবর্তন করলে কম্পাস কাঁটাটি উন্টা দিকে সরে যায়। এর থেকে বোঝা যায় তড়িৎপ্রবাহ চুম্বকশলাকার উপর একটি প্রভাব সৃষ্টি করে। অর্থাৎ তড়িৎ প্রবাহের একটি চৌম্বকব্রিয়া আছে।

পরীক্ষণ : একটি শক্ত কাগক্ষে একটি পরিবাহী তার ঢুকিয়ে এই তারসহ একটি তড়িৎ বর্তনী তৈরি কর। কাগচ্চটি অনুভূমিক করে রেখে তারটির চারপাশে কিছু গোহার গুঁড়া ছড়িয়ে ছিটিয়ে দাও। এবার বর্তনী তথা পরিবাহী দিয়ে তড়িৎ চালনা কর এবং শক্ত কাগক্ষে আগ্রুল দিয়ে আস্তে আস্তেত টোকা দিতে থাক।

দেখা যাবে লোহার গুঁড়াগুলো চিত্র ১২.২ এর মতো নিজেদেরকে সাজিয়ে নেবে। যে রেখায় লোহার গুড়াগুলো নিজেদের সজ্জিত করে তাকে আমরা চুম্বক বলরেখা বলি। সূতরাং তড়িৎ প্রবাহ এর চারদিকে চৌম্বক প্রভাব ক্ষেত্র তথা চৌম্বক ক্ষেত্র তৈরি করে।



छिंज ३२.२

১২.২ সলিনয়েড

Solenoid

উপরে বর্ণিত তারটিকে পেঁচিয়ে কয়েল বা কুণ্ডলী তৈরি করে আমরা চৌম্বক ক্ষেত্রকে ঘনীভূত করতে পারি (চিত্র ১২.৩ দেখ)। পেঁচানো বা কুণ্ডলী পাঁকানো তার দিয়ে তড়িৎ প্রবাহ চালনা করা হলে অধিকাংশ চুম্বক বলরেখা কুণ্ডলীর কেন্দ্রে ঘনীভূত হবে। চৌম্বকক্ষেত্রটি দেখতে অনেকটা দণ্ড চুম্বকের ক্ষেত্রের মতো হবে। এরকম কুণ্ডলীকে বলা হয় সলিনয়েড। এর ভিতর যদি আমরা কোনো লোহার দণ্ড বা লোহার পেরেক ঢুকাই তাহলে লোহার দণ্ড বা পেরেকটি চুম্বকে পরিণত হবে। তড়িৎ প্রবাহ কর্ম করে দিলে লোহার দণ্ডটি বা পেরেকটি আর চুম্বক থাকবে না। প্রবাহের দিক বিপরীত করা হলে, চুম্বকের মেরু বিপরীত হয়ে যাবে। এভাবে লোহার দণ্ডটি বা পেরেকটি বা পাহার দণ্ডটি বা পেরেকটি বা পাহার দণ্ডটি বা পারেকটি যে চুম্বকে পরিণত হলো তাকে বলা হয় তাড়িতচুম্বক।

ठिख ১২.७

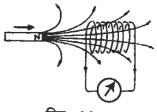
১২.৩ ভাড়িভচুস্বক

Electromagnet

সলিনয়েডের ভিতর কোনো লোহার দণ্ড বা পেরেককে ঢুকালে সলিনয়েডের নিজের ষে চৌম্বকক্ষেত্র রয়েছে তার চেয়ে বেশি শক্তিশালী চৌম্বকক্ষেত্র তৈরি করে ফলে

সিলনয়েড থেকে বেশি চৌস্বকক্ষেত্র পাওয়া যায়। তড়িৎ প্রবাহ চলাকালীন এটি বেশ শক্তিশালী চুস্বকে পরিণত হয়। একে বলা হয় তাড়িতচুস্বক।এই চুস্বকের সবলতা নিম্নোক্তভাবে আরও বাড়ানো যায়—

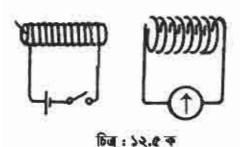
- ভড়িৎ প্রবাহ বাড়িয়ে
- সলিনয়েডের পাকের সংখ্যা বাড়িয়ে
- ইংরেজি U অক্ষরের মতো বাঁকিয়ে ছুম্বক মেরু দুইটিকে আরও কাছাকাছি এনে।

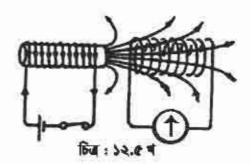

বিভিন্ন তড়িৎ প্রবাহের ফলে বা সলিনয়েডের পাকের সংখ্যা বাড়ালে সলিনয়েড দ্বারা চুম্বকায়িত দন্ড বা পেরেকটি কী পরিমাণ আলপিন বা পেপার ক্লিপ আকর্ষণ করতে পারে তা তোমাদের শিক্ষককের সাহায্য নিয়ে পরীক্ষা করে দেখ। বৈদ্যুতিক ঘণ্টা তৈরি, লোহা বা ইস্পাতের ভারী দ্বিনিস উঠানামা করা বা আবর্জনা সরানোর ক্রেন তৈরিতে তাড়িতচুম্বক ব্যবহার করা হয়। চোখের ভিতর লোহা বা ইস্পাতের গুঁড়া ঢুকলে তা বের করার কাছে এই চুম্বক ব্যবহার কর হয় এছাড়া টেলিফোনের ইয়ারপিস ও দরজার তাড়িতচৌম্বক তালায় তাড়িতচুম্বক ব্যবহার করা হয়।

১২.৪ তাড়িতচৌম্বক আবেশ

Electromagnetic induction

বিজ্ঞানী ওয়েরস্টেডের তড়িতের চৌম্বক ক্রিয়া আবিষ্কারের পর অনেক বিজ্ঞানী চেন্টা করতে থাকেন চৌম্বকক্ষেত্র থেকে তড়িৎ প্রবাহ সৃষ্টি করা যায় কিনা। এই নিয়ে যারা কাজ করছিলেন তাদের মধ্যে ইংল্যান্ডে মাইকেল ফ্যারাডে, আমেরিকায় জ্যোসেফ হেনরি এবং রাশিয়াতে এইচ.এফ.ই.লেঞ্জ তিনজনই পৃথক পৃথকভাবে সাফল্য লাভ করেন। কিম্তু ১৮৩১ সালে মাইকেল ফ্যারাডে তাঁর পরীক্ষালম্ব ফলাফল প্রথম প্রকাশ করেন। তিনি দেখান যে, একটি পরিবর্তনশীল চৌম্বকক্ষেত্র তড়িচ্চালকশক্তি সৃষ্টি করতে পারে যা একটি আবদ্ধ বর্তনী দিয়ে একটি আবিষ্ট তড়িৎপ্রবাহ চালাতে পারে। পরিবর্তনশীল চৌম্বকক্ষেত্রের দ্বারা কোনো বর্তনীতে তড়িচ্চালকশক্তি বা তড়িত প্রবাহ সৃষ্টির এই ঘটনাকে তাড়িতচৌম্বক আবেশ বলে। তাড়িতচৌম্বক আবেশ আবিষ্কারের জন্য ফ্যারাডে দুইটি পরীক্ষা করেছিলেন। পরীক্ষাপুলো তোমরাও করতে পার।


পরীকা—১: কার্ড বোর্ডের একটি চোঙের গায়ে অন্তরীত তার পেঁচিয়ে একটি কুণ্ডলী তৈরি কর। এই কুণ্ডলীতে তড়িৎ প্রবাহের উপস্থিতি বোঝার জন্য এর দুই প্রান্তের সাথে একটি গ্যালভানোমিটার যুক্ত কর। সংযোগ দেওয়ার সময় তারের প্রান্তের অপরিবাহী আবরণ খুলে ফেলতে হবে।এখন একটি দণ্ড চুন্বকের দক্ষিণ মেরুকে দ্রুত চোঙের ভিতর ঢুকাও। কী ঘটছে? কুণ্ডলী দিয়ে তড়িৎ প্রবাহ চলছে। গ্যালভানোমিটারের কাঁটার বিক্ষেপ ঘটছে। এবার চুন্দ্বকটি বের করে নাও। কী



চিত্ৰ : ১২.৪

ঘটছে? চুম্বক প্রবেশ করানোর সময় গ্যালভানোমিটারের কাঁটার বিক্ষেপ যে দিকে হয়েছিল চুম্বককে বের করানোর সময় বিক্ষেপ হয়েছে তার বিপরীত দিকে। চুম্বকটিকে স্থির রেখে এবার যদি গ্যালভানোমিটারসহ কুন্ডলীটিকে চুম্বকের দিকে দুত নেওয়া হয় তাহলেও গ্যালভানোমিটারে ক্ষণিক বিক্ষেপ দেখা যাবে। কুন্ডলীটিকে চুম্বক থেকে দূরে সরিয়ে নিলে বিক্ষেপ বিপরীত দিকে দেখা যাবে।

পরীক্ষা—২ : এই পরীক্ষার জন্য অন্তরীত তামার তারের দুইটি কন্ম কুঙলী নিতে হবে। একটি কুঙলীতে তড়িচালক শক্তির উৎসর্পে একটি ব্যাটারি, একটি পরিবর্তনশীল রোধ ও একটি টেপা চাবি সংযুক্ত করতে হবে (চিত্র ১২.৫ ক)। এ কুঙলীকে মুখ্য কুঙলী কলা হয়। মুখ্য কুঙলীতে তড়িৎ প্রবাহ চালালে অপর কুঙলীতে তড়িৎ প্রবাহ অবিফ হয়। এ কুঙলীতে গ্যালভানোমিটার সংযুক্ত করলে ক্ষণিক বিক্ষেপ দেখা যায়। একে গৌণ কুঙলী কলা হয়। (চিত্র : ১২.৫ খ)। আবার তড়িৎ প্রবাহ কন্ম করার সময়ও গ্যালভানোমিটারে বিক্ষেপ দেখা যাবে। তবে এবার বিক্ষেপ বিপরীত দিকে হয়।

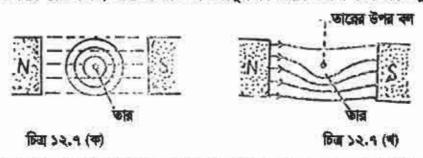
১২.৫ সাবিষ্ট ভড়িৎ প্ৰবাহ ও সাবিষ্ট ভোন্টেজ বা বিভব পাৰ্থক্য

Induced current and induced voltage

পরীকা দুইটি থেকে গালভানোমিটারের বিকেপ বর্তনীতে তড়িং প্রবাহের অস্তিত্ব প্রমাণ করে। সূতরাং কোনো ভার ক্রণীর কাছে লামরা বদি কোনো চুন্দককে নাড়াচাড়া করি বা আনা নেওরা করি বা কোনো চুন্দকের নিকট কোনো তার ক্রণীকে আনা নেওরা করি তাহলে ভার ক্রণীতে তড়িংপ্রবাহ উংগল্প হয়। একে তাড়িওটোন্দক আবেশ বলে। কোনো তড়িংবারী ভার বা বর্তনীর নিকট কোনো ভার ক্রণী আনা নেওয়া করলেও ভার ক্রণীতে তড়িংপ্রবাহ উংগল্প হয়। একেও তাড়িওটোন্দক আবেশ বলে। সূতরাং আমরা বলতে গারি যে, একটি গতিশীল চুন্দক বা তড়িংবারী কর্তনীর দূরত্ব বা তড়িংপ্রবাহের পরিবর্তনের সাহাযো অন্য একটি সংবশ্ধ বর্তনীতে ক্রণখায়ী ভোন্টেক্ক ও তড়িং প্রবাহ উৎগল্প হওয়ার পন্থতিকে তাড়িতটোন্দক আবেশ বলে। এই ভোন্টেককে আবিক্ট ভোন্টেক্ক এবং প্রবাহকে আবিক্ট তড়িংপ্রবাহ বলে।

চুন্দক ও ক্ষুণীর মধ্যবতী আপেন্দিক গতি না থাকলে গ্যালভানোমিটারে কোনো বিকেপ দেখা যার না। আপেন্দিক গতি যক্ত বেশি হয় বিকেশের পরিমাণত তত বৃশ্বি পায়। সূত্রাৎ ক্যা হায়, চুন্দক ও কুণ্ডলীর মধ্যবতী আপেন্দিক গতি যক্তক্ষণ বাকে আবিক ভড়িৎ প্রবাহত তভক্ষণ ন্যায়ী হয়। চুন্দকের মেরু পরিবর্তন করলে আবিক ভড়িৎ প্রবাহের দিকও পরিবর্তিত হয়। আবিক তোল্টেজ বা ভড়িৎপ্রবাহ নিম্নোক্তাবে বৃশ্বি করা যায়—

- শক্তিশালী চুম্বক ব্যবহার করে
- চুম্বককে বা ভারক্তনীকে দ্রুত লানা নেওয়া করে
- ভারকুঙলীর গাক সংখ্যা বৃশ্বি করে।

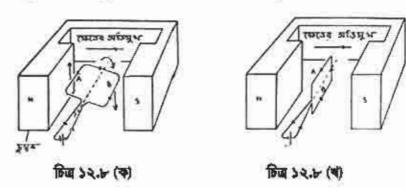

১২.৬ ভড়িৎ প্রবাহী ভারের উপর চুস্পকের প্রতাব

Effect of magnet on a current carrying wire

বামরা জানি বে, ডড়িংবাহী ভার নিজস একটি চৌস্কক্তরের সৃষ্টি করে। শক্তিশালী চুম্বকের বিপরীত মের্ছরের মধ্যে সৃষ্ট চৌম্বক্তের এক ডড়িংবাহী। ভারের চৌস্ক কেন্দ্রের মধ্যে ক্রিয়া শ্রতিক্রিয়া বটে।

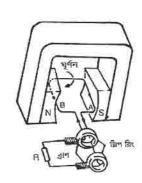
ভোমাদের শিক্ষক এই ক্রিয়া প্রতিক্রিয়া ভোষাদের দেখাতে পারেন। ভোমরা নিজেরা বা শিক্ষকের সহায়তায় এটা করে দেখতে পার। চিত্রের মত করে একটি শক্তিশাদী T N

চুম্বকের দুই প্রান্তের মধ্যে একটি ভড়িৎবাহী ভারকে রাখ। এই ভারের মধ্য চিত্র: ১২.৬: নিমু তোলেন ভড়িৎ উৎস দিয়ে ভড়িৎ প্রবাহিত কর। দেখবে এটি উপরের দিকে শাফিয়ে উঠবে। এর ফলে বোঝা যায় যে, একটি বল এর উপর কাজ করছে। এই বল কোখা থেকে এলং ভূমি যদি চিত্রা : ১২.৭ (ক) এর দিকে ভাকাও ভাইলে চুন্দ্রকের মের্বরের মধ্যবভী কারেখাপুলো দেখতে পাবে। ভড়িপ্পবাহের দর্শ সৃষ্ট চৌন্দ্রক ক্ষেত্রটিও দেখানো হয়েছে। দৃইটি ক্ষেত্রের সমন্বরে সৃষ্ট কারেখাপুলোও ১২.৭ (খ)—তে দেখানো হয়েছে। ভারের নিচে ভারের উপরের চেরে কারেখা বেশি। এর কারণ হলো উভর ক্ষেত্র একই ক্ষতিমুখে ক্রিয়া করছে। [চিত্র ১২.৭ (ক) আবার দেখা। ভারের উপরে ক্ষেত্রছর পরস্পরের বিরোধিতা করছে, করেকটি কারেখা একে অপরকে বাভিন্ন করে দিছে কলে সেখানে রেখার সংখ্যা কম। বেহেত্ রেখাপুলো পরস্পরকে টান টান রাখতে চার ভাই (মিডিস্থাপক রবার ব্যান্ডের মন্ত) ভারা ভারের উপর উথর্যমুখী কা প্রয়োগ করে । কলে ভারটি মৃক্ত অবস্থার



থাকলে উপরের দিকে লাফিরে উঠে। ডড়িৎ প্রবাহের অভিমূপ বিশরীত করা হলে সে কেত্রে ভারটি নিচের দিকে বাবে।

১২.৭ ভঞ্জিৎ মেটির


Electric motor

ধরা যাক, চুম্বকের মের্ছরের মধ্যে একটি টান টান ভার ব্যবহার না করে চিত্র ১২.৮ (ক) এর মতো ভারের একটি লূপ বা ক্টালী ব্যবহার করা হলো। বেছেছ্ শুপটি A থেকে বেঁকে B তে বিপরীত অভিমুখী হরে কিরে এসেছে ভাই লূপের দুই অর্থেকের মধ্যে পরস্পরের বিপরীতমুখী ভড়িৎ প্রবাহিত হবে। সূভরাৎ A তে ভারটি উপরের দিকে উঠবে এবং B তে ভারটি নিচের দিকে নামবে। এর কলে ভারটি যড়ির কটার গভির দিকে যুরবে। চিত্র : ১২.৮ (খ) এর মতো ভারটি যথন খাঁড়া অবস্থার থাকবে ভখন এর উপর কোনো কা ক্রিয়া করবে না। ফলে এটি থেমে যাবে। লুপটিকে ঘূর্ণায়মান রাখার জন্য আমরা কম্যুটেটর নামক একটি উপকরণ ব্যবহার করব। এটি সমান দুই অংশে বিভক্ত একটি ভামার কায় বা আর্থি (চিত্র ১২.৯ দেখ)। এর প্রত্যেক অর্থানে ক্রেলীর একটি প্রত্যের সাথে সংসূক্ত থাকে (বথাক্রমে A ও B তে)। বিভক্ত বগরের বাইরের প্রাস্টি একটি সূদৃদ্ কার্কন ব্রাশের হারা ভড়িৎ উৎসের সাথে সংস্কর্ণ স্থাপন করে। বিভক্ত কারটি ক্রতনীর সাবে যুরে এক বখন এর দুই অর্থেকের মধ্যকার কার কার্কন ব্রাশের বিপরীতে থাকে ভখন কোনো ভড়িৎ প্রবাহিত হবে না। কিন্ডু ভা সক্তেও ভূর্ণন গতির জড়তার কারণে যুর্থন অব্যাহত থাকবে এবং পুনরায় ব্রাশের রলে মুর্থনের জন্য নতুনভাবে বল লাভ করবে। এভাবে মুর্থন ভবিরত চলতে থাকবে।

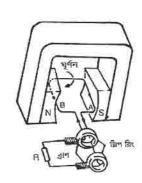
১। এসি জ্বেনারেটর : এসি জ্বেনারেটর অধিক প্রচলিত বিধায় এর গঠন ও কার্যপ্রণালী সম্পর্কে নিম্নে আলোচনা করা হলো :

গঠন : এতে একটি চুস্বক থাকে। চুস্বকের মধ্যবতী স্থানে একটি কাচা লোহার পাতের উপর একটি তারের আয়তকার কুঙলী (চিত্রে AB) থাকে। কাচা লোহার পাতিটিকে আর্মেচার বলে। আর্মেচারটিকে চুস্বকের দুই মেরুর মধ্যবতী স্থানে যান্ত্রিক উপায়ে সমদ্তিতে ঘুরানো হয়। আয়তকার কুঙলীর দুই প্রান্ত দুইটি ক্লিপ রিং এর সাথে সংকৃত্ত থাকে। ক্লিপ রিং দুইটি আর্মেচারের একই অক্ষররাবর ঘুরতে পারে। দুইটি কার্বন নির্মিত ব্রাশ এমনভাবে স্থাপন করা হয় যেন তারা যখন আর্মেচার ঘুরতে থাকে তখন দ্বিপ রিং দুইটিকে স্পর্শ করে থাকে। ব্রাশ দুইটির সাথে বহিবর্তনীর রোধ R সংযুক্ত থাকে।

छित : ১২.১১

কার্যপ্রশাদি : যখন আর্মেচারটিকে ঘ্রানো হয় তখন আর্মেচার কুঙলী চৌন্দকক্ষেত্রের বলরেখাগুলোকে ছেদ করে এবং তাড়িতচৌন্দক আবেশের নিয়মান্যায়ী কুঙলীতে তড়িচ্চালক শব্ধি আবিষ্ট হয়। কুঙলীর একবার ঘূর্ণনের মধ্যে আবিষ্ট তড়িপ্প্রবাহের অভিমুখও একবার পরিবর্ভিত হয়। এখন কুঙলীটির দুই প্রান্ত বর্হিবর্ভনীর সাধে সংযুক্ত থাকায় বর্তনীতে পর্যায়বৃত্ত তড়িপ্প্রবাহের উৎপত্তি হয়। আবিস্ট তড়িপ্প্রবাহের মান প্রধানত চৌন্দকক্ষেত্রের সবলতা ও ঘূর্ণনের বেগের উপর নির্ভর করে। এভাবে যাশিত্রক শক্তি থেকে পর্যায়বৃত্ত প্রবাহ উৎপন্ন হয়।

১২.৯ ট্রান্সফর্মার


Transformer

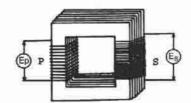
যে যশেত্রর সাহায্যে পর্যায়বৃত্ত উচ্চ বিভবকে নিমু বিভবে বা পর্যায়বৃত্ত নিমু বিভবকে উচ্চ বিভবে রূপান্তরিত করা যায় তাকে ট্রান্সফর্মার বলে। তাড়িতটৌন্দক আবেশের উপর ভিন্তি করে এই যশত্র তৈরি করা হয়। এই যশেত্র একটি ক্রুলীতে তড়িৎপ্রবাহ পরিবর্তন করে অন্য কুন্ডলীতে আবিষ্ট তড়িচ্চালক শক্তি বা তড়িৎ উৎপাদন করা হয়। ট্রান্সফর্মার সাধারণত দুই প্রকারের হয়। যথা—

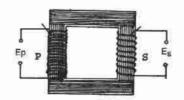
- ১. আরোহী বা স্টেপ আপ ট্রালকর্মার (Step up transformer) : বে ট্রালফর্মার অন্ধ বিভবের অধিক তড়িৎ প্রবাহকে অধিক বিভবের অন্ধ তড়িৎপ্রবাহে রূপান্তরিত করে তাকে আরোহী বা স্টেপ আপ ট্রালফর্মার বলে।
- ২. অবরোহী বা স্টেপ ছাউন ট্রালফর্মার (Step down transformer) : যে ট্রালফর্মার অধিক বিভবের অন্ন তড়িৎপ্রবাহকে অন্ন বিভবের অধিক তড়িৎ প্রবাহে রুপাল্ডরিত করে তাকে অবরোহী বা স্টেপ ডাউন ট্রালফর্মার বলে।
 ট্রালফর্মারের গঠন ও কার্যপ্রণালি : একটি কাচা লোহার আয়তাকার মজ্জা বা কোর নেওয়া হয়। এর পরস্পর বিপরীত দুই বাহুতে অল্ডরীত তার পেঁচিয়ে ট্রালফর্মার তৈরি করা হয় [চিত্র ১২.১২]। আয়তাকার মজ্জার এক বাহুর কুঙগীতে পর্যায়বৃত্ত প্রবাহ বা বিভব প্রয়োগ করা হয়, একে মুখ্য কুঙগী বলে। অপর যে বিপরীত বাহুর কুঙগীতে পর্যায়বৃত্ত বিভব আবিষ্ট হয় তাকে গৌণ কুঙগী বলে। আরোহী বা স্টেপআপ ট্রালফর্মারের মুখ্য কুঙগীর চেয়ে গৌণ কুঙগীতে তারের পাক সংখ্যা বেশি থাকে। অবরোহী বা স্টেপডাউন ট্রালফর্মারে মুখ্য কুঙগীর চেয়ে গৌণ কুঙগীর ভারের পাক সংখ্যা কম থাকে।

১। এসি জ্বেনারেটর : এসি জ্বেনারেটর অধিক প্রচলিত বিধায় এর গঠন ও কার্যপ্রণালী সম্পর্কে নিম্নে আলোচনা করা হলো :

গঠন : এতে একটি চুস্বক থাকে। চুস্বকের মধ্যবতী স্থানে একটি কাচা লোহার পাতের উপর একটি তারের আয়তকার কুঙলী (চিত্রে AB) থাকে। কাচা লোহার পাতিটিকে আর্মেচার বলে। আর্মেচারটিকে চুস্বকের দুই মেরুর মধ্যবতী স্থানে যান্ত্রিক উপায়ে সমদ্তিতে ঘুরানো হয়। আয়তকার কুঙলীর দুই প্রান্ত দুইটি ক্লিপ রিং এর সাথে সংকৃত্ত থাকে। ক্লিপ রিং দুইটি আর্মেচারের একই অক্ষররাবর ঘুরতে পারে। দুইটি কার্বন নির্মিত ব্রাশ এমনভাবে স্থাপন করা হয় যেন তারা যখন আর্মেচার ঘুরতে থাকে তখন দ্বিপ রিং দুইটিকে স্পর্শ করে থাকে। ব্রাশ দুইটির সাথে বহিবর্তনীর রোধ R সংযুক্ত থাকে।

छित : ১২.১১


কার্যপ্রশাদি : যখন আর্মেচারটিকে ঘ্রানো হয় তখন আর্মেচার কুঙলী চৌন্দকক্ষেত্রের বলরেখাগুলোকে ছেদ করে এবং তাড়িতচৌন্দক আবেশের নিয়মান্যায়ী কুঙলীতে তড়িচ্চালক শব্ধি আবিষ্ট হয়। কুঙলীর একবার ঘূর্ণনের মধ্যে আবিষ্ট তড়িপ্প্রবাহের অভিমুখও একবার পরিবর্ভিত হয়। এখন কুঙলীটির দুই প্রান্ত বর্হিবর্ভনীর সাধে সংযুক্ত থাকায় বর্তনীতে পর্যায়বৃত্ত তড়িপ্প্রবাহের উৎপত্তি হয়। আবিস্ট তড়িপ্প্রবাহের মান প্রধানত চৌন্দকক্ষেত্রের সবলতা ও ঘূর্ণনের বেগের উপর নির্ভর করে। এভাবে যাশিত্রক শক্তি থেকে পর্যায়বৃত্ত প্রবাহ উৎপন্ন হয়।


১২.৯ ট্রান্সফর্মার

Transformer

যে যশেত্রর সাহায্যে পর্যায়বৃত্ত উচ্চ বিভবকে নিমু বিভবে বা পর্যায়বৃত্ত নিমু বিভবকে উচ্চ বিভবে রূপান্তরিত করা যায় তাকে ট্রান্সফর্মার বলে। তাড়িতটৌন্দক আবেশের উপর ভিন্তি করে এই যশত্র তৈরি করা হয়। এই যশেত্র একটি ক্রুলীতে তড়িৎপ্রবাহ পরিবর্তন করে অন্য কুন্ডলীতে আবিষ্ট তড়িচ্চালক শক্তি বা তড়িৎ উৎপাদন করা হয়। ট্রান্সফর্মার সাধারণত দুই প্রকারের হয়। যথা—

- ১. আরোহী বা স্টেপ আপ ট্রালকর্মার (Step up transformer) : বে ট্রালফর্মার অন্ধ বিভবের অধিক তড়িৎ প্রবাহকে অধিক বিভবের অন্ধ তড়িৎপ্রবাহে রূপান্তরিত করে তাকে আরোহী বা স্টেপ আপ ট্রালফর্মার বলে।
- ২. অবরোহী বা স্টেপ ছাউন ট্রালফর্মার (Step down transformer) : যে ট্রালফর্মার অধিক বিভবের অন্ন তড়িৎপ্রবাহকে অন্ন বিভবের অধিক তড়িৎ প্রবাহে রুপাল্ডরিত করে তাকে অবরোহী বা স্টেপ ডাউন ট্রালফর্মার বলে।
 ট্রালফর্মারের গঠন ও কার্যপ্রণালি : একটি কাচা লোহার আয়তাকার মজ্জা বা কোর নেওয়া হয়। এর পরস্পর বিপরীত দুই বাহুতে অল্ডরীত তার পেঁচিয়ে ট্রালফর্মার তৈরি করা হয় [চিত্র ১২.১২]। আয়তাকার মজ্জার এক বাহুর কুঙগীতে পর্যায়বৃত্ত প্রবাহ বা বিভব প্রয়োগ করা হয়, একে মুখ্য কুঙগী বলে। অপর যে বিপরীত বাহুর কুঙগীতে পর্যায়বৃত্ত বিভব আবিষ্ট হয় তাকে গৌণ কুঙগী বলে। আরোহী বা স্টেপআপ ট্রালফর্মারের মুখ্য কুঙগীর চেয়ে গৌণ কুঙগীতে তারের পাক সংখ্যা বেশি থাকে। অবরোহী বা স্টেপডাউন ট্রালফর্মারে মুখ্য কুঙগীর চেয়ে গৌণ কুঙগীর ভারের পাক সংখ্যা কম থাকে।

চিত্র: ১২.১২ (ক) উচ্চধাপী ট্রান্সফর্মার

চিত্র: ১২.১২ (খ) নিমুখাপী ট্রান্সফর্মার

মনে কর কোনো ট্রালফর্মারে n_p পাকবিশিষ্ট মুখ্য কুণ্ডলীতে E_p পর্যায়বৃত্ত বিভব প্রয়োগ করার ফলে এই কুণ্ডলীতে I_p প্রবাহ পাণ্ডয়া গেল। এই প্রবাহ মজ্জাটিকে চুম্বকিত করে চৌম্বক বলরেখা উৎপন্ন করে যা মুখ্য কুণ্ডলীতে একটি আবিষ্ট ভোন্টেজ বা তড়িচ্চালক শক্তি উৎপন্ন করে। চৌম্বক বলরেখার যদি কোনো ক্ষরণ না হয় তাহলে গৌণ কুণ্ডলীর প্রতি পাকেও একই সংখ্যক বলরেখা সংযুক্ত হবে। ফলে গৌণ কুণ্ডলীতেও ভোন্টেজ বা তড়িচ্চালক শক্তি আবিষ্ট হবে। গৌণ কুণ্ডলীর পাক সংখ্যা n_s এবং গৌণ কুণ্ডলীতে আবিষ্ট ভোন্টেজ বা তড়িচ্চালক শক্তি E_s হলে মুখ্য ও গৌণ কুণ্ডলীর ভোন্টেজ ও তারের পাকসংখ্যার সম্পর্ক হবে,

$$\frac{E_P}{E_S} = \frac{n_P}{n_S} \tag{12.1}$$

যখন $n_s>n_p$ তখন ট্রান্সফর্মারটি আরোহী বা স্টেপআপ ট্রান্সফর্মার এবং যখন $n_s< n_p$ তখন ট্রান্সফর্মারটি অবরোহী বা স্টেপডাউন ট্রান্সফর্মার। কোনো ক্ষমতার অপচয় না ঘটলে মুখ্য কুন্ডলীর প্রযুক্ত সকল ক্ষমতা গৌণ কুন্ডলীতে সরবরাহ হবে। স্তরাং, মুখ্য কুন্ডলীর ভোল্টেন্ড \times মুখ্য কুন্ডলীর তড়িৎপ্রবাহ = গৌণ কুন্ডলীর ভোল্টেন্ড \times গৌণ কুন্ডলীর তড়িৎপ্রবাহ অর্থাৎ $E_pI_p=E_sI_s$

$$\blacktriangleleft, \frac{E_P}{E_S} = \frac{I_S}{I_P} \tag{12.2}$$

এর অর্থ এই যে, কোনো ট্রালফর্মার যে হারে ভোন্টেজ কমায় ঠিক সে হারে ভড়িৎ প্রবাহ বৃশ্বি করে যাতে ক্ষমভার পরিমাণ সমান বা ধ্রুব থাকে। সূতরাং ট্রালফর্মার ভোন্টেজ ও ভড়িৎ প্রবাহ উভয়কেই রুপান্তর করে।

দুরদ্রান্তে তড়িৎ প্রেরণের জন্য আরোহী বা স্টেপআপ ট্রালফর্মার ব্যবহার করা হয়। নিমু ভোন্টেজ ব্যবহারকারী যদত্তপাতি বেমন রেডিও, টেলিভিশন, টেপরেকর্ডার, ভিসিআর, ভিসিপি, ইলেকট্রিক ঘড়ি ইত্যাদিতে অবরোহী বা স্টেপডাউন ট্রালফর্মার ব্যবহার করা হয়।

গাণিতিক উদাহরণ : ১২.১। একটি ট্রান্সকর্মারের মুখ্য কুঙগীতে ভোল্টেজ 10V এবং প্রবাহ 6A। গৌণ কুঙগীর ভোল্টেজ 20Vহলে, গৌণ কুঙগীর প্রবাহ নির্ণয় কর।

আমরা ছানি:

$$\begin{split} \frac{E_P}{E_S} &= \frac{I_S}{I_P} \\ \hline \blacktriangleleft , \quad I_S &= \frac{E_P}{E_S} \times I_P = \frac{10V \times 6A}{20V} = 3A \end{split}$$

উত্তর : 31

গাণিতিক উদাহরণ : ১২.২। একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীর পাক সংখ্যা 50, ভোল্টেজ $210\mathrm{V}$ । এর গৌণ কুণ্ডলীর পাক সংখ্যা 100 হলে ভোল্টেজ কত ?

আমরা জানি:

$$\frac{E_p}{E_s} = \frac{n_p}{n_s}$$

ৰা,
$$E_s = \frac{n_s}{n_p} \times E_p$$

$$= \frac{100}{50} \times 210V = 420V$$

উত্তর : 420V

এখানে,

মুখ্য কুণ্ডলীর পাক সংখ্যা $n_P=50$ মুখ্য কুণ্ডলীর ভোন্টেন্স, $E_P=210{
m V}$ গৌণ কুণ্ডলীর পাক সংখ্যা, $n_S=100$ গৌণ কুণ্ডলীর ভোন্টেন্স, $E_S=?$

গাণিতিক উদাহরণ : ১২.৩। একটি ট্রান্সফর্মারের মুখ্য কুন্ডলীর পাক সংখ্যা 18 এবং গৌণ কুন্ডলীর পাক সংখ্যা 90, মুখ্য কুন্ডলীর তড়িৎ প্রবাহ 7A হলে গৌণ কুন্ডলীর প্রবাহ কত ?

আমরা জানি:

$$\frac{I_S}{I_P} = \frac{n_P}{n_S}$$

বা,
$$I_S = \frac{n_P}{n_S} \times I_P$$

$$I_S = \frac{18}{90} \times 7A = \frac{7}{5}A = 1.4A$$

উত্তর : 1.4A

এখানে.

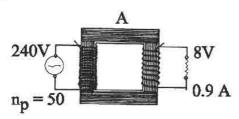
মুখ্য কুণ্ডলীর পাক সংখ্যা $n_p=18$ মুখ্য কুণ্ডলীর তড়িৎপ্রবাহ $I_p=7$ A

গৌণ কুণ্ডলীর পাক সংখ্যা, n_s =90গৌণ কুণ্ডলীর তড়িৎপ্রবাহ I_s =?

जन्नी ननी

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উন্তরের পাশে টিক $(\sqrt{\ })$ চিহ্ন দাও

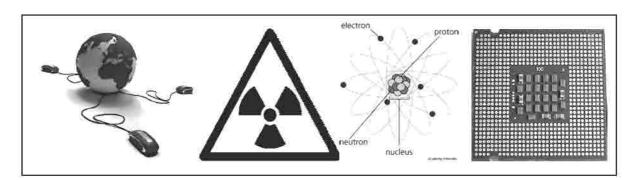

- ১। কোনো চোণ্ডের উপর অন্তরীত তার পেঁচিয়ে সলিনয়েড তৈরি করে তাতে তড়িৎপ্রবাহ চালালে চৌম্বকক্ষেত্রের কী ঘটবে?
 - (ক) ঘনীভূত ও দুর্বল হবে

- (খ) ঘনীভূত ও শক্তিশালী হবে
- (গ) কম ঘনীভূত ও দুর্বল হবে
- (ঘ) কম ঘনীভূত কিন্তু শক্তিশালী হবে

২।	কোনটির কার্যপ্রণালিতে তাড়িতচৌস্বক আবেশকে ব	্যবহার করা হয় ?			
	(ক) ট্রানজিস্টর	(খ) মোটর			
	(গ) অ্যাস্প্রিফায়ার	(ঘ) ট্রান্সফর্মার			
৩।	কোন প্রক্রিয়া বা কার্যধারায় তড়িচ্চালকশক্তি উৎপন্ন	হয় –			
	(i) কোনো তারকুণ্ডলীর ভিতর কোনো চুম্বক স্থির ত	মবস্থায় রাখলে			
	(ii) কোনো চৌস্বকক্ষেত্রে কোনো তারকুণ্ডলী ঘুরালে				
	(iii) কোনো স্থির তারকুঙলীর চারদিকে কোনো চুম্বক ঘুরালে				
	নিচের কোনটি সঠিক?				
	(T) i	(뉙) ii			
	(গ) i ও ii	(ঘ) ii ও iii			
	·	য়া করা হচ্ছে। এতে তারকুঙলীতে ভোল্টেজ আবিষ্ট হচ্ছে।			
আবিফ্ট ভোল্টেজ্ঞ কয়েকটি বিষয়ের উপর নির্ভর করে। এবার নিচের ৪ ও ৫ নম্বর প্রশ্নের জ্বাব দাও।					
8	 ৪। তাড়িতচৌস্বক আবেশের বেলায় আবিষ্ট ভোল্টেজ কোনটির উপর নির্ভর করে ? 				
	(i) তারকুণ্ডলীর সাথে সংশ্লিফ চৌম্বকক্ষেত্রের প্রাবল্য				
	(ii) চৌস্বকক্ষেত্রে আনানেওয়া করা তারকুঙলীর রোধ				
	(iii) চৌম্বকক্ষেত্রে আনানেওয়া করা তারকুঙলীর দ্রুতি				
	নিচের কোনোটি সঠিক?				
	(本) i	(킥) ii			
	(গ) i ও ii	(ঘ) i ও iii			
œ۱	। তারকুণ্ডলীর পাকের সংখ্যা বাড়ালে আবিষ্ট তড়িৎপ্রবাহের কী ঘটবে?				
	(ক) তড়িৎপ্রবাহ কমে যাবে	(খ) তড়িৎপ্রবাহ বেড়ে যাবে			
	(গ) তড়িৎপ্রবাহের মান শূন্য হবে	(ঘ) তড়িৎপ্রবাহের মান সমান হবে			

ধ. সৃজনশীল প্রশ্ন

১। চিত্রটি দেখে নিচের প্রশ্নগুলোর উত্তর দাও।


- (ক) A চিহ্নিত কম্ভূটির নাম কী?
- (খ) যশত্রটি যে নীতি বা ঘটনার উপর তৈরি তা ব্যাখ্যা কর।
- (গ) এই যদেত্রর মুখ্য কুন্ডলীতে প্রবাহ মাত্রা নির্ণয় কর।
- (ঘ) উপাত্তের আলোকে যলত্রটির ক্রিয়া গাণিতিকভাবে ব্যাখ্যা কর।

গ. সাধারণ প্রশ্ন

- ১। তড়িৎপ্রবাহের চৌম্বক ক্রিয়া কী ?
- ২। তাড়িতচুম্বক কাকে বলে? এই চুম্বক কী কী কাজে লাগে?
- ৩। জেনারেটর কাকে বলে? জেনারেটর দিয়ে কী কাজ করা হয়?
- ৪। জেনারেটর ও ভড়িৎ মোটরের মধ্যে পার্থক্য কী ?
- ৫। স্টেপআপ ও স্টেপডাউন ট্রালফর্মার দ্বারা কী কাব্দ করা হয় ?
- ৬। তাড়িতচুম্বকের প্রাবল্য কীভাবে বৃশ্বি করা যায় লিখ।
- ৭। কোনো ট্রান্সফর্মার 240V এসি উৎসের সাথে সংযুক্ত আছে। এর মুখ্য ও গৌণকুঙলীর পাক সংখ্যা যথাক্রমে 1000 ও 50। এর গৌণকুঙলীর ভোন্টেজ কত?

ত্ৰয়োদৰ অধ্যায়

আধুনিক পদার্থবিজ্ঞান ও ইলেকট্রনিক্স MODERN PHYSICS AND ELECTRONICS

িবিংশ শতাব্দীর শুরুতে পদার্থবিজ্ঞানের জ্বগতে এক নতুন যুগের সূচনা হয়। এই সময় কোরান্টাম তন্ত্ব ও আপেক্ষিক তন্ত্ব আবিষ্কৃত হয়। অতি উচ্চ গতিসম্পন্ন কণার গতি এবং নিউক্লীয় ও পারমাণবিক গদার্থবিজ্ঞানের বিভিন্ন ঘটনা ব্যাখ্যার জন্য তন্ত্ব দুইটি প্রয়োজন হয়ে পড়ে। এ ছাড়া ইলেকট্রনিঙ্গ নানা বিবর্তনের মধ্য দিয়ে এক উন্নতত্তর অবস্থায় পৌছার ফলে আমরা তথ্য ও যোগাযোগের নানানরকম উন্নত বন্দ্রবাতি নির্মাণ ও ব্যবহারে সক্ষম হই। এভাবে আধুনিক পদার্থবিজ্ঞান বিকাশ লাভ করে। এই অধ্যায়ে আমরা তেজ্ঞক্রিয়তা, তেজক্রিয়কণা ও রাশ্বি, ইলেকট্রনিঙ্গ এর ক্রমবিকাশ, অর্থপরিবাহী ও সমন্বিত বর্তনী, বিভিন্ন ইলেকট্রনিঙ্গ ডিভাইস, মাইক্রোকোন, স্পীকার, রেডিও, টেলিভিশন, ফোন,ফ্যাঙ্গমেশিন, ইন্টারনেট ও ইমেইল নিয়ে আলোচনা করব।]

এ অধ্যার পঠি শেবে আমরা–

- ১. তেজস্ক্রিয়তা ব্যাখ্যা করতে পারব
- ২. আলফা, বিটা ও গামারশ্রির বৈশিক্ট্য ব্যাখ্যা করতে পারব
- ইলেকট্রনিক্স এর ক্রমবিকাশ বর্ণনা করতে পারব।
- এনালগ ও ডিজিটাল ইলেকট্রনিক্সের পার্থক্য করতে পারব।
- অর্ধপরিবাহী ও সমন্বিত বর্তনী ব্যাখ্যা করতে পারব।
- মাইক্রোফোন ও স্পীকারের কার্যক্রম ব্যাখ্যা করতে পারব।
- নির্বাচিত যোগাযোগ প্রযুক্তি ডিভাইনের কার্যক্রমের মৃশনীতি ব্যাখ্যা করতে পারব।
- ইন্টারনেট এবং ই মেইলের সাহায্যে যোগাযোগ প্রক্রিয়া ব্যাখ্যা করতে পারব।
- তথ্য ও যোগাযোগ প্রযুক্তিগত ডিভাইস কীভাবে আমাদের জীবনয়াত্রাকে প্রভাবিত করছে তা অনুসন্ধান করতে পারব।
- ১০. তথ্য ও যোগাযোগ প্রযুক্তি ডিভাইস সঠিক ও কার্যকর ব্যবহারে নিজে সচেতন হবো এবং জন্যদের সচেতন করব।

১৩.১ তেন্ধন্দ্রিয়তা Radioactivity

ফরাসী বিজ্ঞানী হেনরী বেকরেল (Henry Becquerel) ১৮৯৬ সালে দেখতে পান যে, ইউরেনিয়াম ধাতুর নিউক্লিয়াস থেকে স্বতঃস্ফুর্তভাবে বিশেষ ভেদনশক্তিসম্পন্ন বিকিরণ অবিরত নির্গত হয়। বেকরেল আরো লক্ষ করেন, যে মৌল থেকে এই বিকিরণ নির্গত হয় তা একটি সম্পূর্ণ নতুন মৌলে রূপান্তরিত হয়। এটি একটি নিউক্লীয় ঘটনা। ঘটনাটি স্বতঃস্ফূর্ত ও অবিরাম ঘটনা এবং সম্পূর্ণভাবে প্রকৃতি নিয়ন্ত্রত। মানব সৃষ্ট কোনো বাহ্যিক প্রভাব যেমন চাপ, তাপ, বিদ্যুৎ ও চৌম্বক ক্ষেত্র এই রশ্মির নির্গমণ কম্ম করতে বা হ্রাসবৃদ্ধি ঘটাতে পারে না। পরবর্তীকালে মাদাম কুরি (Madame Marie Curie, 1867-1934) ও তাঁর স্বামী পিয়ারে কুরি (Pierre Curie, 1859-1906) একই রকম ঘটনা লক্ষ করেন। তাঁরা দেখতে পান যে, রেডিয়াম, পোলোনিয়াম, থোরিয়াম, অ্যাকটিনিয়াম, প্রভৃতি ভারী মৌলের নিউক্লিয়াস থেকেও একই ধরনের বিকিরণ নির্গত হয়। এই বিকিরণ এখন তেজক্রিয় রশ্মি (Radioactive rays) নামে পরিচিত। কোনো মৌল থেকে তেজক্রিয় কণা বা রশ্মি নির্গমণের ঘটনাকে তেজক্রিয়তা (Radioactivity) বলে। তেজক্রিয় মৌল আলফা, বিটা ও গামা নামে তিন ধরনের শক্তিশালী রশ্মি নির্গমণ করে। ফলে এরা ভেঙে অন্যান্য পরিণত হয়। যেমন রেডিয়াম ধাতু তেজক্রিয় ভাঙনের ফলে ধাপে ধাপে পরিবর্তিত হয়ে সীসায় পরিণত হয়। তেজক্রিয়তা পরিমাপের জন্য যে একক ব্যবহার করা হয় তার নাম বেকরেল।

১৩.২ আলফা কণা, বিটা কণা ও গামা রশ্মির বৈশিষ্ট্য

Properties of alpha, beta and gamma rays

আলফা কণা : আলফা কণা হলো একটি হিলিয়াম নিউক্লিয়াস। এর নিউক্লিয়াসে রয়েছে দুইটি প্রোটন ও দুইটি নিউট্রন। আলফা কণার ভেদন ক্ষমতা কম, $6~\mathrm{cm}$ বাতাস ভেদ করে যেতে পারে না। এই কণা চৌম্বক ও তড়িৎ ক্ষেত্র দারা প্রভাবিত হয়। এই কণা তীব্র আয়নায়ন সৃষ্টি করতে পারে এবং মারাত্মক ক্ষতিকর ও বিপদজনক। এর ভর হাইড্রোজেন পরমাণুর চার গুণ এবং আধান $3.2\times10^{19}\mathrm{C}$ । ফটোগ্রাফিক ফিল্ম, ক্লাউড চেম্বার, স্বর্ণপাত তড়িৎবীক্ষণ যন্দেত্রর সাহায্যে এর উপস্থিতি নির্ণয় করা যায়। এই কণা জিজ্ক সালফাইড পর্দায় প্রতিপ্রভা সৃষ্টি করে। এর বেগ আলোর বেগের শতকরা ১০ ভাগ।

বিটা কণা: এই কণা ঋণাত্মক আধানযুক্ত এবং চৌম্বক ও তড়িৎ ক্ষেত্র দ্বারা অনেক বেশি বিক্ষিপত হয়। এর দুতি আলোর দুতির শতকরা ৫০ ভাগ তবে শতকরা ৯৮ ভাগ পর্যন্ত হতে পারে। এর ভর ইলেকট্রনের সমান অর্থাৎ $9.11 \times 10^{-31}~{
m kg}$ । ফটোগ্রাফিক ফিল্ম ও ক্লাউড চেম্বার দিয়ে এর উপস্থিতি নির্ণয় করা যায়। এই কণা প্রতিপ্রভা সৃষ্টি করতে পারে। এর ভেদন ক্ষমতা আলফা কণার চেয়ে বেশি। এর গতি $3~{
m mm}$ পুরু অ্যালুমিনিয়াম পাত দ্বারা থামিয়ে দেওয়া যায়। বিটা কণা গ্যাসে যথেষ্ট আয়নায়ন সৃষ্টি করতে পারে।

গামা রশ্মি: এই রশ্মি আধান নিরপেক্ষ। একটি তাড়িতচৌন্দক তরঞ্চা। স্বন্ধ তরঞ্চা দৈর্ঘ্যবিশিষ্ট। এর কোনো ভর নেই। এই রশ্মি তড়িৎ ও চৌন্দক ক্ষেত্র দ্বারা বিচ্যুত হয় না। এর দুতি আলোর সমান অর্থাৎ $3\times 10^8~{
m m~s}^{-1}$ । এই রশ্মির ভেদন ক্ষমতা অনেক বেশি। এটি বেশ কয়েক সেশ্টিমিটার পুরু সীসার পাত ভেদ করে যেতে পারে। দুর্বল আয়নায়ন ক্ষমতা সম্পন্নহলেও এই রশ্মি প্রতিপ্রভা সৃষ্টি করতে পারে। ফটোগ্রাফিক ফিল্ম, ক্লাউড চেম্বার ও গাইগার মুলার কাউন্টার দিয়ে এর উপস্থিতি নির্ণয় করা যায়।

১৩.৩ তেজস্ক্রিয় মৌলের অধায়

Half life of a radioactive element

একটি তেজস্ক্রিয় মৌলের কোন পরমাণুটি কখন ক্ষয়প্রাশ্ত হয় তা আমরা বলতে পারি না। কিন্তু কতগুলো পরমাণু কোন সময়ে ক্ষয়প্রাশ্ত হবে তা আমরা হিসাব করে বের করতে পারি। পরমাণুর ক্ষয় বিবেচনার জন্য এক গুচ্ছ পরমাণু বিবেচনা করা হয়। যে সময়ে কোনো তেজস্ক্রিয় পদার্থের মোট পরমাণুর ঠিক অর্থেক পরিমাণ ক্ষয়প্রাশ্ত হয় তাকে ঐ পদার্থের অর্ধায়ু বলে। উদাহরণস্বরূপ ধরা যাক, কোনো মৌলে ৮০০০০০ টি তেজস্ক্রিয় পরমাণু আছে। এর অর্থেক অর্থাৎ ৪০০০০০ টি পরমাণু ক্ষয় হয়ে কোনো নতুন মৌলে রূপান্তরিত হতে যে সময় লাগে তাকে ঐ পদার্থের অর্ধায়ু বলে। পরবর্তী অর্ধায়ুর পর এতে অবশিষ্ট থাকবে ২০০০০০টি পরমাণু। আর একটি অর্ধায়ুর পর এই পরমাণুর সংখ্যা দাঁড়াবে ১০০০০টিতে, এভাবে চলতে থাকবে।

এখানে একটি সম্ভাবনার নিয়ম কাজ করে কোন পরমাণুটি কখন ভেঙে যাবে তা কেউ বলতে পারে না।

১৩.৪ তেজস্ক্রিয়তার ব্যবহার

Uses of radioactivity

তেজস্ক্রিয়তার বহুল ব্যবহার রয়েছে চিকিৎসা বিজ্ঞানে, কৃষিক্ষেত্রে ও শিল্প কারখানাতে। চিকিৎসা বিজ্ঞানে বিশেষ করে দূরারোগ্য ক্যানসার রোগ নিরাময়ে তেজস্ক্রিয়তার ব্যবহার আজ বহুল প্রচলিত। এছাড়া বিভিন্ন রোগ যেমন কিডনির ব্লকেড, থাইরয়েডের সমস্যা নির্ণয়ে চিকিৎসা বিজ্ঞানে তেজস্ক্রিয় আইসোটোপ তেজস্ক্রিয় ট্রেসার (tracer) বা প্রদর্শক বা সন্ধায়ক হিসেবে ব্যবহৃত হয়। কৃষিক্ষেত্রে বিশেষ করে উন্নত জাতের বীজ তৈরি ও গাছের জন্য প্রয়োজনীয় বিশেষ ধরনের সার উৎপাদনের গবেষণায় তেজস্ক্রিয় ট্রেসার সফলতার সাথে ব্যবহৃত হচ্ছে। শিল্প কারখানাতেও তেজস্ক্রিয়তা ব্যাপকভাবে ব্যবহৃত হচ্ছে। যন্ত্রপাতি জীবাণুমুক্ত করতে, কাগজকলে কাগজের পুরুত্ব নিয়ন্ত্রণে, আগুনের ধোঁয়ার উপস্থিতি নির্ণয়ে, ধাতব ঝালাই যাচাইয়ে তেজস্ক্রিয়তা ব্যবহৃত হচ্ছে। খনিজ পদার্থে বিভিন্ন ধাতুর পরিমাণ নির্ণয়েও এর ব্যবহার রয়েছে। এমনকি রোগ নির্ণয়ের কাজেও তেজস্ক্রিয় সন্ধায়ক সফলতার সাথে কাজে লাগানো হচ্ছে।

অনেক ঘড়ির কাঁটা ও নম্বর অন্ধকারেও জ্বলজ্বল করতে দেখা যায়। এর কারণ হলো তেজস্ক্রিয় থোরিয়ামের সাথে জিজ্ফ সালফাইড মিশিয়ে ঘড়ির কাঁটা ও নম্বরে প্রলেপ দেওয়া হয় ফলে এরা অন্ধকারে জ্বলজ্বল করে। লক্ষ লক্ষ বছরের পুরোনো জিনিসের বয়স বা কাল নির্ণয়ে তেজস্ক্রিয়তা ব্যবহার করা হয়।

১৩.৫ তেজ্বস্কিয়তা সম্পর্কে সচেতনতা

Awarness of radioactivity

তেজস্ক্রিয়তা আমাদের অনেক উপকারে লাগে কিন্তু এ থেকে মারাত্মক বিপদও ঘটতে পারে। উচ্চ মাত্রার তেজস্ক্রিয় বিকিরণ মানবদেহে নানা রকম সমস্যার সৃষ্টি করে। এই বিকিরণ থেকে জীবনঘাতি ক্যানসার হতে পারে। দীর্ঘ দিন মাত্রাতিরিক্ত তেজস্ক্রিয় বিকিরণের সংস্পর্শে থাকলে মানুষের রোগ প্রতিরোধ ক্ষমতা হ্রাস পায়। মানুষ মানসিক বিকারগ্রস্ত হতে পারে। এমন কি বিকলাজ্ঞাতাও সৃষ্টি হতে পারে। তেজস্ক্রিয়তার ক্ষতিকর প্রভাব বংশ পরস্পরায়ও পরিলক্ষিত হয়। সূতরাং যারা তেজস্ক্রিয় বিকিরণ নিয়ে কাজ করেন তাদের সতর্ক থাকতে হবে। মাত্রাতিরিক্ত তেজস্ক্রিয় বিকিরণ থেকে রক্ষার জন্য প্রয়োজনীয় ব্যবস্থা নিতে হবে।

শুনার্থবিজ্ঞান

১৩.৬ ইলেকট্রনিজের ক্রমবিকাশ

Development of electronics

বর্তমান যুগ হলো ইলেকট্রনিজের যুগ। রেডিও, টেলিভিশন, ফোল, কাল, কম্পিউটার, ক্যামেরা, যড়ি ইত্যাদি সকল ডিভাইস ইলেকট্রনিজের অবলান। ত্যাকুয়াম টিউব, বিশেষ ধরনের কেলাস ও চিপাসের মধ্য দিয়ে ভড়িব্রবারের নিয়ন্দরণ হলো ইলেকট্রনিজ। ইলেকট্রনিজের ইডিহাস প্রায় একপত বছরেরও বেশি পুরানো। ইলেকট্রনিজের প্রকৃত যারা শুরু ১৮৮৩ সালে এডিসন রিয়া আবিক্তারের মধ্য দিয়ে। এডিসন ববন তড়িৎ বাতি নিয়ে কাল করছিলেন তবন একটি জিনিস ভাকে খুব বিব্রুত করছিল। ভার বাতির কার্বন কিলামেন্টের ধনাজ্মক প্রান্ত বার বার পুড়ে বাজিল। এ অসুবিধা দূর করার জন্য তিনি কিলামেন্টের সাথে একটি প্রেট সিল করে তুকিয়ে দিলেন। তিনি দেবতে পান কিলামেন্ট সাপেকে প্রেটকে ববন বনাজ্মক বিত্র দেওরা হচেল ভাকুয়াম টিউবের মধ্য দিয়ে একটি তড়িব্রবাহ চলে।কিশ্চু প্রেটকে কাণাজ্মক বিত্র দিলে তড়িব্রবাহ চলে না। এডিসন বিবরটির ব্যাখ্যা এতাবে দেন, বেহেতু উত্তন্ত কিলামেন্ট থানে কিনামেন্ট দিকে বায়, সুতরাং এ লাখান ক্ষণাজ্মক। শ্রেট ক্ষণাজ্মক হলে ঐ নিঃসৃত লাধানকে বিকর্ষণ করে ফলে কর্তনীতে কোনো ভড়িব্রবাহ থাকে না। এটাই এডিসন ক্রিয়া নামে গরিচিত। বৃটিশ পার্শবিজ্ঞানী ক্রেমিং এডিসন ক্রিয়াকে কাজে শালিয়ে প্রথম ভ্যাকুয়াম টিউব আবিক্ষার করেন। এই টিউব রেকটিকারার বা একম্পৃথিকারক হিসেবে কাজ করে জর্জাং এটি দিক পরিবর্তী ডড়িৎ প্রবাহকে (এসি) একম্পৃথি তড়িৎ প্রবাহকে (ডিসি) গরিবর্তিত করে। এটিই ইলেকট্রনিজের আগল জন্ম।এসময় মার্কনির রেডিওর জন্য ডিটেকটরের পুব প্রয়োজন ছিল।এই টিউব নে জভাব পুরণ করে। এতে দুইটি ইলেকট্রেড ছিল বলে এর নাম ভারোত।

এর পূই বছর পর আমেরিকার দ্য করেন্ট ট্রারোভ নামে আর একটি ত্যাকুরাম টিউব আবিক্ষার করেন। এতে তিনটি ইপেকট্রোড ছিল ডাই এর নাম দেওয়া হয় ট্রারোড। এর মধ্যে আনোড ও ক্যাথোড ছাড়া তৃতীয় একটি ইলেকট্রোড ছিল বার নাম দেওয়া হয় বিড। প্রিড আনোড থেকে ক্যাথোডে ভড়িংপ্রবৃহ নিয়শরেণ করে। এটা বিষয়কর যে ট্রারোড আস্থিকায়ার হিসেবে কাল করতে পারে। সূতরাং যোগাযোগের কেরের বিকাশে ট্রায়োড পুরুত্বপূর্ণ ভূমিকা পালন করে।

(ডারোভ ও ট্রায়োডের চিত্র)

ভারোভ ও ট্রারোভ তালতের আকার অনেক বড় হওয়ায় বিভিন্ন ইলেকট্রনিক্স ভিতাইসে স্থাপন করতে সমস্যা দেখা দেয়। এর জন্য শক্তির ব্যয় বেশি, এটির নির্ভরবোগ্যভা কম একং একে ঠান্ডা রাখার জন্য অধিক শীতশীকরণ ব্যক্ষা থাকা প্রয়োজন। বিজ্ঞানীরা ভাই এর বিকল্প হিসাবে কোনো অর্থপরিবাহী ভিতাইস বুঁজহিলেন। পরবর্তীতে তাঁরা p-n

জাংশন ডায়োড আবিস্কার করেন। এর পর দীর্ঘ পরীক্ষা নিরীক্ষার পর তারা n- p-n ট্রানজিস্টর আবিস্কার করতে সক্ষম হন। ট্রানজিস্ট্র অ্যাম্প্রিকায়ার বা বিবর্ধক হিসাবে কাজ করতে পারে।

অনেকগুলো ইলেকট্রনিক উপাংশকে একটি একক মাদারবোর্ডে সংযোজন করতে সমস্যা দেখা দেয়। কোনো কোনো ক্ষেত্রে সম্ভবণ্ড হয় না। তাই আবিষ্কৃত হয় সমন্বিত বর্তনী বা আইসি। আইসি হলো সিলিকনের মতো অর্ধপরিবাহী ব্যবহার করে তৈরি এমন একটি নির্মাণ যাতে আমাদের আঙুলের নথের সমান জায়গায় লক্ষ লক্ষ আণুবীক্ষণিক তড়িৎবর্তনী অজ্ঞীভূত থাকে। ১৯৬০ সালে এর আবিষ্কারের পর থেকেই আইসি চিপসের ডিজাইনে বিপ্লব ঘটতে থাকে।

১৩.৭ এনালগ ও ডিজিটাল ইলেকট্রনিক্স

Analogue and digital electronics

এনালগ সংকেত: যেসব ঘটনার মান নিরবচ্ছিন্নভাবে পরিবর্তিত হয় তাদের বুলা হয় এনালগ। শব্দ, আলো, তাপমাত্রা ও চাপের মান কোনো নির্দিষ্ট পরিসরের মধ্যে যেকোনো মান হতে পারে। এনালগ উপান্ত নিরবচ্ছিন্নভাবে প্রেরিত হয়। টেলিফোন, রেভিও, টিভি সম্প্রচার ও কেবল টিভি সাধারণত এনালগ ডেটা বা উপান্ত প্রেরণ করে থাকে।

সূতরাং এনালগ সংকেত হলো নিরবচ্ছিত্রভাবে পরিবর্তনশীল ভোন্টেন্ড বা কারেন্ট। এই ভোন্টেন্ড বা কারেন্ট স্বাভাবিকভাবে পরিবর্তিত হয় এবং নিমুতম থেকে উচ্চতম মানের মধ্যে যেকোনো মান গ্রহণ করতে পারে। এনালগ সংকেত ভাসলে একটি সাইন তরজা। ভড়িও ও ভিড়িও ভোন্টেন্ড হলো এনালগ সংকেতের উদাহরণ।

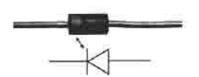
ডিজিটাল সংক্রেত : সাধারণভাবে ডিজিট কথাটির অর্থ সংখ্যা। ডিজিটাল কথাটি এসেছে 'ডিজিট' বা সংখ্যা কথাটি থেকে। ডিজিটাল সংক্রেত বলতে সেই যোগাযোগ সংক্রেত বোঝায় যা শুধু কিছু নির্দিষ্ট মান গ্রহণ করতে পারে। এরা ছিন্নায়িত মানে পরিবর্তিত হতে পারে এদের প্রত্যেককে পৃথকভাবে চেনা যায়। এ ব্যক্তথায় বাইনারি কোড অর্থাৎ 0 ও ১ এর সাহায্য নিয়ে যেকোনো তথ্য, সংখ্যা, অক্লর, বিশেষ সংক্রেত ইত্যাদি বোঝানো এবং প্রেরিত হয়। এই সংক্রেত ব্যক্তথায় 'অন' অবস্থার মান ১ এবং 'অফ' অবস্থার মান 0।

চিত্র: ১৩.৩ এনাশগ সংকেতকে ডিচ্চিটাশ সংকেতে রূপাশ্তর

কম্পিউটার যেকোনো উপান্ত (ডেটা) সংরক্ষণ, প্রক্রিয়াকরণ এবং প্রেরণ করে থাকে ডিঞ্চিটাল ডেটা হিসেবে। মোডেম এর সাহায্যে এনালগ ডেটাকে ডিঞ্চিটাল এবং ডিঞ্চিটাল ডেটাকে এনালগ ডেটার রূপাস্তরিত করা যায়। এনালগ ঘড়িতে ঘড়ির কাটা অবিরত ঘুরে সময় দেয়, আর ডিঞ্চিটাল ঘড়িতে এক মিনিট পরপর সংখ্যা পরিবর্তিত হয়ে সময় দেয়।

এনালা ও ডিজিটাল সম্ভক্তের সুবিধা ও অসুবিধা

এনালন ও ডিজিটাল সংক্ষেত্রে মধ্যে কোনোটি উদ্ভয় তা তিনটি বিষয় দিয়ে বিচার করা যায়। এগুলো হলো সংক্ষেত্র পুশারত মাণ, হাজিয়া চালানোর জন্য হায়োজনীর মালমশলা ও দাম বা ব্যয়।


অবিক দূরত্বে সংক্রেত প্রেরণের জন্য ডিজিটাল সংক্রেত উত্তম। কারণ দূরত্ব বেলি হলে এনালল সংক্রেতর ক্রমতা ধীরে ধীরে কমতে থাকে। একে বাঁচিয়ে রাখতে পূন্র্বিবর্ধন করতে হয়। কিন্তু এতে নরেজ বেড়ে বায় কলে সংক্রেতর মান ব্রাস পায় বা সংক্রেত বিকৃত হয় এবং এক সময় হারিয়েও বেতে পারে।। কিন্তু ডিজিটাল সিগন্যাল বেতে বেতে বিবর্ধিত হয়। কলে সংক্রেত একই রক্ম থাকে। অগটিক্যাল ফাইবার হারা সংক্রেত প্রেরণে ডিজিটাল সংক্রেত ব্যবহার করা হয়। কারণ সর্বশেষ সংক্রেতিরও উত্তম পূর্ণগত মান বজার থাকে। এছাড়া প্রতি সেকেতে জনেক বেলি সংক্রেত প্রেরণ করা বায়। এনালগ ডিতাইসের চেয়ে ডিজিটাল ডিভাইস ব্যরবহুল বলেও ডিজিটাল সার্ভিসের কেলার সর্বসমেত ব্যর কম। এনালগ ডিতাইসের কেলার সর্বসমেত বায়ে, ডিজিটালে তা হয় না।

১৩.৮ অর্থপরিবাহী ও সমন্বিত বর্তনী

Semiconductor and integrated circuits

অর্থপরিবারী: কিছু কিছু পদার্থ (যেমন সিলিকন ও জার্মেনিরাম) আছে বেপুলো সুপরিবারী নয়, অল্ডরকণ্ড নয়। এদের কলা হয় অর্থপরিবারী। বিশুল্থ অর্থপরিবারী লীভন অকলার অল্ডরকের মডো কাজ করে এক আভাবিক কক্ষ ভাগমাত্রায় পুর সামান্য পরিবারী। কিল্ডু কিছু নিদিন্ট অন্য পদার্থ এর সাথে যোগ করে এর পরিবারিতা বাড়ানো বায়। কোন পদার্থ বোগ করা হয়েছে তার ভিত্তিতে অর্থপরিবারীকে n- টাইপ ও p- টাইপ হিসেবে তাগ করা হয়। সিলিকনের সাথে ফসকরাস বোগ করে তৈরি অর্থপরিবারী হলো n- টাইপ অর্থপরিবারীর একটি উদাবরণ। ফসকরাস পরমাণ্র উপস্থিতি এতে বাণান্তক ইলেকট্রনের সংখ্যা বৃশ্বি করে বা পদার্থের মধ্যে মুক্তাবে চলচল করতে পারে।

সিলিকনের সাথে বোরন থোপ করে তৈরি অর্থপরিবাহী হলো p- টাইপ অর্থপরিবাহীর একটি উদাহরণ। বোরন পরমাণু ইলেকট্রন কাঠামোর মধ্যে ফাঁক বা ধনাজ্বক হোল তৈরি করে। ইলেকট্রন এক হোল থেকে জন্য হোলে লাকিরে লাকিরে পদার্থের মধ্যে চলাচল করে।



চিন্ত ১৩.৪: ডামোড ও এর প্রতীক চিক্

বদি p- টাইপ পদার্থের সাথে n- টাইপ অর্থগরিবাহীর জোড়া দাগানো হর ভারদে একটি অভি প্ররোজনীয় ভিভাইস ভৈরি হর বাকে p- n জালেন ভারোভ বলে। এটি ক্রেকটিকায়ার বা একমুখিকারক হিসাবে কাল করে।

ভায়োভ তড়িপ্পৰাহকে একমূখি করে ক্ষাঁৎ ভায়োভ দিক পরিবতী ভড়িপ্পৰাহ (এসি) কে একমূখি ভড়িপ্পৰাহে (ভিসি) মুগাস্ভরিত করে।

বিভিন্ন কাছে ভড়িংপ্রবাহ ও ভোন্টেছ বিবর্ধনের প্রয়োজন হয়। এ কাজটি বে ডিভাইস দিয়ে করা হয় ভার নাম আশ্রিকায়ার। ট্রানজিন্টার হলো একটি ডিভাইস যা অ্যান্থিকায়ার ও উচ্চ দুডি সুইচ হিসেবে কাছ করে। দুইটি n- টাইপ অর্থপরিবাহীর মাঝে একটি p- টাইপ অর্থপরিবাহী স্যাভুইচের মতো জোড়া লাগিয়ে ট্রানজিন্টের তৈরি করা হয়। এর ভিনটি স্করকে কলা হয় সঞ্জাবক (collector), ভূমি (base) ও নিঃসারক

চিত্র ১৩.৫: ট্রানজিস্টার ও এর প্রতীক চি🛛

ণদার্থ বিজ্ঞান 276

(emitter)। n- টাইপ অঞ্চল হলো ট্রানজিস্টরের সঞ্চাহক ও নিঃসারক এবং সরু p- টাইপ অঞ্চল হলো স্থুমি। একইভাবে দুইটি p-টাইণ ও একটি n-টাইণ অর্থপরিবাহী ব্যবহার করে ট্রানজিস্টর ভৈরি করা যায়। যার p-টাইণ অঞ্চল হলো সংগ্রাহক ও নিঃসারক এবং সরু n-টাইণ অঞ্চল হলো ভূমি।

ভড়িত্প্রবাহ বিবর্ষণের কাজে ট্রালজিস্টর ব্যবহার করা হর।

সমন্দিত বর্তনী: সমন্দিত বর্তনী বা ইন্টিচেটেড সার্কিট আইসি (IC) নামে বেশি পরিচিত। কশ্লিউটার, মোবাইলকোন থেকে শুরু করে মাইক্রোওভেন পর্যন্ত যত রকম বৈদ্যাতিক যশত্রপাতি বর্তমানে আমরা দেখি তার অধিকাংশগুলোভেই আইসির ব্যবহার দেখা বার। আইসি হলো সিলিকনের মতো কর্মপরিবাহী ব্যবহার করে তৈরি এমন একটি নির্মাণ যাতে আমাদের অন্তুলের নথের সমান জারগায় লক লক আণুবীকণিক ডড়িংবর্তনী সংযুক্ত বা জজীভুত থাকে। ১৯৬০ সালে এর আবিস্ফারের পর বেকেই আইসি চিগসের ডিজাইনে বিশ্লব ঘটতে থাকে। প্রথম দিকে আইসি চিপসে শুধু কয়েক শত বর্তনী উপালে অজীভূত ছিল। ১৯৭০ সালের মধ্যে এই সংখ্যা বেড়ে হাজারে শৌছায়। ঐ সময় আইসি শুধু কম্পিউটার ও পকেট ক্যালকুপেটরে ব্যবহুত হত। বর্তমানে একটি একক আইনি চিগ লক লক্ষ উপালে ধারণ করতে भारत या यह करिन फिलारेंस वा यनज हामारक वावरूक रहा। विशास रैनटॉन हिन व्यत्रक्य वाक्टि फेनास्त्रन। मकात ব্যাগার হলো বছরের গর বছর চিগসে উপাদেশর সংখ্যা বন্ত বেড়েছে চিগসের আকার ভন্ত ছোট হয়ে এসেছে এবং ডিভাইসের মান হয়েছে ডড উনুত।

আইসি চিপন যদি আবিষ্কৃত এবং এভাবে বিকশিত না হত ডাহলে আমরা মোবাইলকোন, ইন্টারনেট, এমপিপ্তি প্রেয়ার ও আরও অনেক সৃত্তমশীশ ভিতাইস শেতাম শা। আধুনিক আইসি চিপ বিশ্রব এনেছে, দিয়েছে অনেক সুমোলসুবিধা ও আরাম আরেস।

১৩.৯ মাইক্রোকোন ও স্গীকার

Microphone and speaker

মাইক্রেফোনকে চলভি কথায় মাইক বলে। কোনো বড় সন্তা বা অনুষ্ঠানে বক্তা যে ইলেকট্রনিক ডিডাইসের সামনে দাঁড়িয়ে কথা বলেন ভাকে কণা হয় মাইকোফোন বা মাইক। মাইকোফোন শব্দকে ভড়িৎ সংক্ৰেভে রূপাশ্ভর করে। শ্রোতা এই কথা গাঁচড স্পীকারের মাধ্যমে জোরে শূনতে পান। কারণ স্পীকার মাইক্রোফোনের ডড়িৎ সংকেতকে শব্দে পরিবর্ভিড করে। ছোমাদের স্কুলের বিভিন্ন অনুষ্ঠানে মাইক্রোফোন ও স্পীকারের ব্যবহার ছোমরা দেখে ধাকবে। টেপত্রেকর্মার, ভিসিন্ধার ইত্যাদিতে মাইক্রোকোন ও স্পীকার দুটোই থাকে।

মাইক্রেমকোন ও এর কার্যক্রম : আমরা আপেই বলেছি যে, মাইক্রোফোন হলো এমন একটি ভিভাইস যা শব্দতরজ্ঞাকে তাড়িডঅডিও তরকা বা সংক্রেতে গরিবর্তিত করে। ভাড়িতবডিও ভরজের কম্পাক্ষ ও আপেকিক বিস্ভার শব্দ ভরজের মন্ডই থাকে। মাইক্রোফোনের মধ্যে একটি চলকুছলী ও ছারাফ্রাম নামে ধাতুর একটি পাতলা পাত থাকে। যখন মাইকোফোনে কেউ কথা বলে তখন শব্দ ভরভা দ্বারা এ ভায়াস্ত্রায় কম্পিত হয়। ডায়াফ্রাম হলো মাইক্রোফোনের সে অংশ যা শব্দের কম্পনকে ভড়িতে রুগাস্তরের জন্য ভিজাইন করা থাকে। বিভিন্ন রক্তমের শব্দের কম্পন ভারাফ্রামকে বিভিন্নভাবে কম্পিড করে। এই কল্পন চৌন্দকক্ষেত্রের মধ্যে অপ্রপদ্ধাৎ গডিশীল করে। কলে চৰকুভণীতে পর্বারকৃত্ত ভড়িৎপ্রবাহ আবিক করে। মাইক্রোকোন চিত্র ৪ ১৩.৬ : মাইক্রোকোন এভাবেই শব্দ শক্তিকে ভড়িংশক্তিতে রূপাশ্চরিত করে। একে বলা হয় অভিও সংক্ৰেক।

থ ভাঞ্জিভন্তভিও সংকেতকে বিবর্ষিত করে টেলিকোন লাইন বা রেভিওর মাধ্যমে অনেক দূরে গাঁঠানো বার। সূতরাৎ টিভি এবং রেভিও সম্প্রচার, রেকর্ডিং ও টেলিফোনের কেরে মাইক্রোকোন অচ্যন্ত পুরুত্বপূর্ণ ভূমিকা পালন করে।

শীকার (Speaker) : শীকার মাইক্রোকোনের ঠিক বিশরীত কাজটি করে। শীকার মাইক্রোকোনের ভড়িৎ সংকেতকে অনুরূপ শব্দে রূপাশ্চরিত করে।

স্পীকারের কার্যক্রম : অধিকাংশ লাউডস্পীকার হলো চলকুড়লী লাউডস্পীকার। এতে থাকে—

 কেলাকৃতির একটি স্থায়ী ছুল্বক বা একটি শক্তিশালী টৌল্বকক্ষেত্র তৈরি করে।

চিত্র ঃ ১৬.৭ স্পীকারের বাহ্যিক রুপ

২. একটি ছোট কয়েল বা ভারকুঙলী বুলালো থাকে। এই ভারকুঙলী চৌল্ফকক্ষের মধ্যে মুক্তভাবে অর্থণতাৎ দুলভে পারে।

৩. ডারকুডদীর সাথে শব্দু আকৃতির কাগজ (a paper cone) দাপানো থাকে।

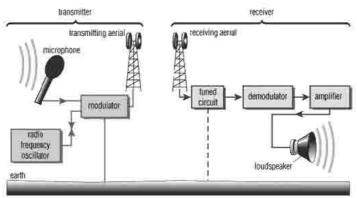
যথন শব্দ থেকে তৈরি পর্যায়ত্ত ভড়িৎপ্রবাহ এ ভারকুর্য়গী দিরে প্রবাহিত হয়, তথন ভারকুর্যুগীটি অরপকাৎ যাওয়া আনা করে। এতে কাগছের শতমূটি কম্পিত হয়।ফলে শব্দের দৃষ্টি হয়।

১৩.১০ জখ্য ও বোগাবোগ প্রযুক্তি

436

Information and communication technology

ভধ্য ও ঝোলাবোল প্রযুক্তি এখন পৃথই পরিচিত ও জনপ্রির বিষয়। সামাদের দৈনন্দিন জীবনের সাধারণ কাজ থেকে পৃত্ করে শেশাগত জীবনের অনেক পৃত্তমুর্গ কাজ তথ্য ও বোগাঝোগ প্রযুক্তি ব্যবহার করে সহজেই করতে পারি। বিশে এবং একবিংশ শতকের প্রারম্ভে মানুষের কার্যক্রমকে সবচেরে বেলি প্রভাবিত করেছে ঝোলাঝোল। উনবিংশ শতকে টেলিকোন ও টেলিপ্রায়ের বিকাশ উন্নয়নে মানুষের বোগাঝোল কমতা আরও একধাল এগিরে পেছে। বিংশ শতকে বোগাঝোপের বিশ্লব এনেছে রেভিও, টেলিভিশন, সেলকোন, ক্যান্স মেলিন। এসব ব্যবস্থার পর ঝোলাঝোপের ক্ষেত্রে সবচেরে বেলি অবদান রেখেছে কম্পিউটার ও ইন্টারনেট।


ব্রেডিও: প্রতিও বিনোদন ও যোগাযোগের একটি ব্যাপক ও গুরুত্বপূর্ণ মাধ্যম। রেডিওতে আমরা থকা,গাল বাজনা, নটক, আলোচনা বিভর্ক এবং গণ্যের বিজ্ঞাপন শুনতে পাই। সেনাবাহিনী ও পূলিশবাহিনীতে তথ্য আদান প্রদানের জন্য রেডিও ব্যবহার করা হয়। মোবাইগ বা সেলুলার টেলিফোন বোলাযোগে রেডিও ব্যবহৃত হয়। ব্রেডিও আবিজ্ঞাবে মেনব বিজ্ঞানী অবদান রেখেছেন, তারা হলেন ইতাদির পূলিবেলমো মার্কনি ও বাজাদেশের বিক্রমপুরের স্যার জগদীশ হন্দ্র বসু।

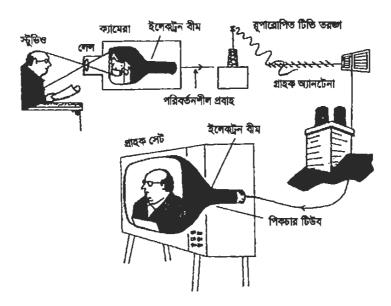
চিত্র : ১৩.৮: ব্রেভিও

রেডিগুতে আমরা শব্দ শূনতে পাই। এ শব্দ কীভাবে প্রেরিড হর এবং কীভাবেই বা আমরা শূনতে পাই? কোনো বেতার সম্প্রচার স্টেশনের স্টুডিগুতে কোনো ব্যক্তি মাইক্রোকোনের সামনে কথা বংগন। মাইক্রোকোন ঐ শব্দকে তড়িংতরজ্যে রূপান্তরিত করে। এ তরজ্যের নাম অভিও সংক্ষেত। এ সংক্ষেতর কম্পাক্ত বা শক্তি পুবই কম, ২০ হার্জ

থেকে ২০০০০ হার্জ। এ তরজা বেশি দূর যেতে পারে না। তথ্য বহনকারী কম কম্পাক্ষের এ তরজাকে তাই এক প্রকার উচ্চ কম্পাক্ষবিশিক্ট তাড়িতটোম্বক তরজার সাথে মিশ্রিত করা হয়। উচ্চ কম্পাক্ষবিশিক্ট এই তরজাকে বাহক তরজা বলে। মিশ্রিত তরজাকে বলা হয় মড়ুলেটেড বা রূপারোপিত তরজা। এ দূই তরজোর মিশ্রণের প্রক্রিয়াকে বলা হয় মড়ুলেটেড বা রূপারোপিত তরজাকে অ্যাম্প্রিকায়ারে বিবর্ধিত করে প্রেরক যম্প্রেলন। রূপারোপিত তরজাকে বেতার তরজাও বলা হয়। বেতার তরজাকে অ্যাম্প্রিকায়ারে বিবর্ধিত করে প্রেরক যম্প্রের এপ্টেনার সাহাব্যে তাড়িতটৌম্বক তরজা হিসেবে শূন্যে (Space) প্রেরণ করা হয়। এ বেতার তরজা শূন্যে ছড়িয়ে পড়ে এবং ভূমি তরজা (Ground wave) ও আকাশ তরজা (Sky wave) নামে দূই ধরনের তরজো তাগ হয়। ভূমি তরজা সরাসরি গ্রাহক যম্প্রের এরিয়েলে পৌছার। আমাদের ঘরে যে রেডিও সেটটি থাকে তাহলো গ্রাহক্ষশত্র। আকাশতরজা আয়নমন্ডলে প্রতিফলিত হয়ে পৃথিবীতে ফিরে আসে এবং গ্রাহক্ষমেত্রর এরিয়েলে ধরা পড়ে। গ্রাহক্ষমত্র বেতার তরজাকে গ্রহণ করে একে তড়িৎপ্রবাহে রূপাশ্তরিত করে। এরপর ডি–মড়ুলেশন বা বিরূপারোপণ প্রক্রিয়ায় বাহকতরজা হতে শৃন্দ আলালা করে নেওয়া হয়। অতঃপর আমিশ্রকায়ারের সাহাব্যে তড়িৎপ্রবাহকে বিবর্ধিত করে একং লাউডস্পীকারে প্রেরণ করে। আমাল করে। এ শন্দ আমরা শূনতে পাই।

চিত্র ১৩.৯: রেডিও সম্প্রচার ও প্রহণ প্রক্রিয়া

সূতরাং, রেডিওতে প্রেরক যশ্ত্র থেকে শব্দ প্রেরণ করা হয় না। শব্দতরজ্ঞাকে তাড়িতটৌস্বক তরজ্ঞো রুণাস্তরিত করে পাঠানো হয়, গ্রাহকষশ্ত্র বেতার তরজ্ঞা গ্রহণ করে লাউড স্পীকার একে শব্দে রুপাস্তরিত করে। টেলিভিশন: টেলিভিশন হলো এমন একটি যশত্র যার সাহায্যে আমরা দূরবর্তী কোনো স্থান থেকে শব্দ শোনার সজ্ঞো


বক্তার ছবি টেলিভিশনের পর্দার দেখতে পাই।

চিত্ৰ ১৩.১০ : টেলিভিশন

লজি বেয়ার্ড ১৯২৬ সালে টেলিভিলনে চিত্র প্রেরণে সক্ষম হন। সেদিনকার টিভি শিল্পী ছিল একটি কথা বলা পুতৃল।

টেলিভিশন কী করে কান্ধ করে : আমরা জ্ঞানি , টেলিভিশনে ছবি দেখার সাথে সাথে শব্দণ্ড শোনা যায়। টেলিভিশনে শব্দ ও ছবি প্রেরণের জন্য প্রেরক স্টেশনে থাকে পৃথক পৃথক প্রেরক যন্ত্র, যার সাহায্যে তাড়িতচৌম্বক তরম্ভারূপে শব্দ ও ছবি প্রেরণ করা হয়।

চিত্র ১৩.১০ : টেলিভিশন সম্প্রচার প্রক্রিয়া

একটি প্রেরক যন্তেরর সাহায্যে ছবিকে তড়িৎ সপ্কেতে রূপাল্তরিত করে প্রেরণ করা হয়। অন্য একটি প্রেরক যন্তেরর সাহায্যে ছবিকে তড়িৎসপ্কেতে রূপাল্তরিত করে তা তাড়িতচৌন্দক তরক্ষা হিসেবে প্রেরণ করা হয়। প্রথমে ছবি প্রেরণ ও গ্রহণের কথাই বলা যাক। যে ছবি বা দৃশ্য প্রেরণ করতে হবে তা টেলিভিশন ক্যামেরা তড়িৎ সপ্কেতে রূপাল্তরিত করে। এ সংকেতকে মড়্লেশন প্রক্রিয়ায় উচ্চ কম্পাজ্কের বাহক তরক্ষোর সাথে মিশ্রিত করা হয়। পরে এন্টেনার সাহায্যে তাড়িতচৌন্দক বেতার তরক্ষা হিসেবে প্রেরণ করা হয়।

এন্টেনার সাহায্যে টিভি সেট ছবির জন্য প্রেরিত তাড়িতটৌম্বক বাহক তরক্ষা গ্রহণ করে। রেকটিফায়ার বাহক তরক্ষা থেকে ভিডিও তড়িৎ সংকেতকে পৃথক করে। বিবর্ধকের সাহায্যে এ তড়িৎ সংকেতকে বিবর্ধিত করা হয় একং ইলেকট্রনগানে তা প্রদান করা হয়। টিভির পিকচার টিউবের পিছনের প্রান্তে ইলেকট্রন গান সংযুক্ত থাকে। ভিডিও সংকেত গ্রহণের পর ইলেকট্রনগান সুইয়ের ন্যায় সর্ ইলেকট্রন বীম ছুঁড়তে থাকে। টিভির পর্দার প্রতিপ্রভ ফসফরে ইলেকট্রন গান থেকে যখন ইলেকট্রন বীম এসে পড়ে তখন এতে আলোক ঝলকের সৃষ্টি হয়। এ উচ্ছ্বল ও অনুচ্ছ্বল আলোক কিন্দুর সমন্বয়েই টিভির পর্দায় উচ্ছ্বল ও অনুচ্ছ্বল আলোক কিন্দুর সমন্বয়েই টিভির পর্দায় ফুটে উঠে ক্যামেরা থেকে পাঠানো ছবি। টেলিভিশনের পর্দার উপর প্রতি সেকেন্ডে ২৫টি স্থির চিত্র গঠন করে যা আমাদের চোখ চলমান ছবি হিসেবে দেখে।

শব্দ প্রেরণ ও গ্রহণ

টেলিভিশনে যে চিত্র প্রেরণ করা হবে তার সাথে সংশ্লিফ শব্দকেও মাইক্রোফোনের সাহায্যে তড়িত সংক্রেতে রুপান্তরিত করা হয়। এ তড়িৎ তরজ্ঞাকে বাহকতরক্ষা নামক এক প্রকার উচ্চ কম্পাক্ষবিশিফ তাড়িতচৌম্বক তরজ্ঞার সাথে মিশ্রিত করা হয় এবং প্রেরক যম্বের সাহায্যে প্রেরণ করা হয়।

আমরা বাড়িতে যে টেলিভিশন সেট ব্যবহার করি তাতে শব্দ ও ছবি সংক্রেত গ্রহণের জন্য পৃথক ব্যবস্থা থাকে। প্রেরক যশ্র কর্তৃক প্রেরিত তাড়িতচৌম্বক তরজ্ঞা আমাদের টিভি সেটের এন্টেনায় আসে এবং তড়িৎ প্রবাহের সৃষ্টি করে। এ তড়িৎপ্রবাহ তারের মাধ্যমে টেলিভিশন সেটের গ্রাহকযন্ত্রে যায়। টেলিভিশন সেটের শব্দ গ্রহণকারী গ্রাহকযন্ত্র এ ভড়িৎ সহকেন্ত গ্রহণ করে বিবর্ষিত করে। পরে একে শাউডস্পীঝারে শ্রেরণ করে। শাউডস্পীঝার এ তড়িৎ সহকেন্তকে মূল শব্দে রূপাশ্তরিত করে। এ শব্দ আমরা শুনতে পাই।

মোটামুটিভাবে এ হলো সাদাঝালো টেলিভিশনের কার্যপ্রালি।

রাষ্ট্রন টেলিভিশনঃ রাষ্ট্রন ও সাদাকালো টেলিভিশনের মূল কার্যনীতিতে তেমন কোনো পর্যবিদ্য নেই। রাষ্ট্রন টেলিভিশন ক্যামেরায় তিনটি মৌলিক রঙ্ক গোল, আসমানী এবং সকুক)—এর জন্য তিনটি পৃথক ইলেকট্রনগান থাকে। রাষ্ট্রন টেলিভিশন প্রাহক বলেরও তিনটি ইলেকট্রন গান থাকে। প্রকটি বিশেষ রং বৃধু তার বিশেষ রঞ্জের কসকর দানাগুলোকে আলোকিত করে। ফলে টেলিভিশন টিউবের পর্নায় একই সাথে ফুটে উঠে লাল, আসমানী ও সকুক রক্ষের কিন্দু একং একের বিভিন্ন রক্ষম মিশুলে টেলিভিশনের পর্নায় কুটে উঠে বিভিন্ন রক্ষিন ছবি।

টেলিকোল

ভূমিকা : টেলিকোন হলো বিশ্বের সর্বসূহৎ, সবচেয়ে বহুল ব্যবহৃত ও জনপ্রিয় এক জটিন বোগাবোগ মাধ্যম। বেকোনো দেশে কথাবার্তা করা, বর্তা, কাজবার্তা পাঠানো, কম্পিউটার যোগাবোল, ইমেইল আদানপ্রদান ইত্যাদি ক্ষেত্রে এটি ব্যবহৃত হর।

আলেকজান্তার গ্রাহাম কেন (Alexander Graham Bell) ১৮৭৫ সালে টেনিকোন আবিন্দার করেন। বহু বিবর্তনের মধ্য দিয়ে গ্রাহাম বেলের আবিন্দৃত টেনিকোন আন্ধকের আধুনিক টেনিকোনে এসে গৌছেছে, তৈরি হয়েছে কডলেন, সেলুলার, যোবাইল ইত্যাদি নামের টেনিকোন।

টেশিকোন কীভাবে কাল করে

প্রতি টেলিফোন সেটেই সহকেত প্রহণ ও প্রেরণের ব্যবসা থাকে। টেলিফোনের হ্যান্ডসেটের মাউথ নিসটি হলো মাইক্রোফোন,এটি হলো প্রেরক এবং ইরারনিসটি হলো স্পীকার, এটি হলো প্রাহক। টেলিফোন সেটে থাকে বিশ্ব ক্রিছ ফটা বান্ধানোর একটি রিগোর ও একটি ভারানিং ব্যবস্থা। আমরা কথন কথা বলি মাউখনিসের মাইক্রোফোনটি কর্চ্বসরের শব্দ ভরজাকে ভড়িং সহকেতে বুশাস্ভরিত করে। এ সহকেত টেলিফোনের ভার দিরে অপর টেলিফোনের ইরারনিসে যার। ইরারনিসের স্পীকার ভড়িং সহকেতকে শব্দে রূপাস্ভরিত করে, কলে প্রাহক বা প্রোডা শব্দ শূনতে পান এবং কথার জব্মব দেন। এ জব্মব প্রোজার টেলিফোন সেটের মাউখনিসের মাইক্রোফোনের সাহাত্যে ভড়িং সহকেতে পরিণত হত্তে প্রেরকের টেলিফোনে ফিরে আসে এবং প্রেরকের

ইরারশিসের শীকারে শব্দে গরিণত হর, হোরক তথন গ্রাহকের কথা শূনতে পার। টেলিফোনের ভারে ডড়িৎ সংকেত এত দুত সঞ্চালিত হয় বে, এতে কোনো কিশ্ব ঘটে না। প্রতিটি টেলিকোন সেট এর আঞ্চলিক প্রধান অফিনের সাথে ভারের মাধ্যমে সন্তাব্ধ থাকে। আঞ্চলিক প্রধান অফিনের মাধ্যমে অস্য টেলিকোনের সাথে বোলাবোল ঘটে।

লেল কোন বা নোবাইল কোন: মোবাইল কোন বা মুঠোফোন বর্তমানে লবচেবে বেশি ব্যবহুত ও জনপ্রিয় বোলাযোগ মাধ্যম। শৃথু বোলাযোগ নয়, এই ফোনে ভোমরা গেইম বেলতে পার,মিউজিক ডাউনলোড করতে পার, গান শুনতে পার, নিনেমা দেখতে পার এক ইন্টারনেট ব্যবহার করতে পার।

চিত্র: ১৬.১১: দ্যান্ড ও যোবাইন টেলিকোন

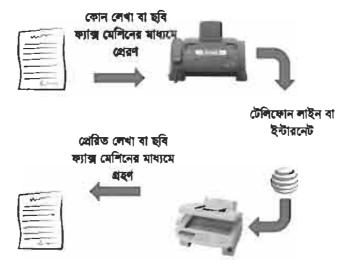


চিত্র: ১৩.১২: দ্যাডটেদিকোনের কার্যপ্রদালী

এছাড়া এ কোনে ক্যাশ পেমেন্ট, বিল পরিশোধ, এরারপোর্টে চেকইন এবং কলেন্স বা বিশ্ববিদ্যালরে ভর্ডির দরখাস্ড করতে পার। এ কোনের সাহায্যে দেশের যেকোনো প্রাশ্চ থেকে অগর যেকোনো প্রাশ্চে যোগাযোগ করা যায়।

মোবাইলে কল করা ও কল রিসিত করা

এ ফোন কিল্ছু প্রধান অফিস বা অন্য ফোনের সাথে তার দিয়ে সংযুক্ত থাকে না। এ ধরনের ফোন তারের পরিবর্তে রেডিও বা বেতারের সাহায্যে কথাবার্তা বা তথ্য প্রেরণ ও গ্রহণ করে থাকে। মোবাইল ফোনে টেলিফোন নেটওয়ার্কের সাথে সংযোগ ঘটে এক মোবাইল সেটের কীবোর্ড থেকে অন্য মোবাইলে ডায়াল করার মাধ্যমে। যখন তুমি কোনো মোবাইল থেকে কোন কর তুমি ষেখানেই থাক না কেন কলটি বেতার তরক্ষা হিসেবে কোনো প্রেরক গ্রাহক টাওয়ারে যায়।


চিত্র ১৩.১৩: মোবাইল নেটওয়ার্ক

এরপর কলটি তার বা মাইক্রোওরেভের মাধ্যমে মোবাইল সুইচ স্টেশনে যায়। এ স্টেশন কলটিকে স্থানীয় টেলিফোন এক্সচেঞ্জে পাঠায়। সেখানে এটি প্রচলিত কোন কল হয়ে গ্রাহকের নিকট পৌছায়। বর্তমানে প্রচলিত অধিকাশে মোবাইল কোন কাজ করে বেতার তরজা প্রেরণ এবং প্রচলিত টেলিফোন সার্কিট সুইচিং এর সমন্বয়ে।

ফ্যান্ধ : ফ্যান্সিমিল এর সংক্ষিণত নাম ফ্যান্স। কোনো ডক্মেন্ট হুবহু কপি করে পাঠাতে ফ্যান্স ব্যবহার করা হয়।

ফ্যাঙ্গ কী: ফ্যাঙ্গ হলো এমন একটি ইলেকট্রনিক ব্যক্তথা যার মাধ্যমে যেকোনো তথ্য, ছবি, চিত্র, ডায়াগ্রাম বা লেখা হুবহু কপি করে প্রেরণ করা যায়। এ যলেত্রর সাহায্যে যেকোনো মূল দলিল হুবহু পুনরুৎপাদন করা হয়।

১৮৪২ সালে ফ্যাক্স মেশিন আবিষ্কৃত হলেও রেডিও ফ্যাক্স এর যাত্রা শুরু হয় ১৯৩০ সালে। বিজ্ঞানী আলেক্ছাভার বেইন ফ্যাক্স আবিষ্কার করেন।

চিত্র ১৩.১৪: ফ্যাঙ্গ মেশিন ও এর কার্যক্রম

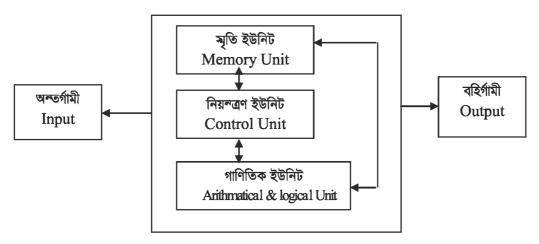
ফ্যাঙ্গ কীভাবে কাজ করে: আধুনিক ফ্যাঙ্গ মেশিন হলো একটি অতি উন্নত প্রযুক্তির তড়িৎ আলোকীয় মেশিন। এখানে ইলেকট্রনিক উপায়ে মূল ডকুমেন্টকে স্ক্যানিং করা হয়। এরপর স্ক্যানকৃত সংক্রেতকে বাইনারি সংক্রেতে রূপান্তর করা হয়। এই সংক্রেত স্ট্যান্ডার্ড মোডেম কৌশল ব্যবহার করে টেলিফোনের মাধ্যমে প্রেরণ করা হয়। গ্রাহক ফ্যাঙ্গ মেশিন

প্রেরিত ইলেকট্রনিক সংকেত গ্রহণ করে মোডেমের সাহায্যে ডিমড্লোট করে মূল ডকুমেন্টে পরিণত করে। একটি প্রিন্টার এই মূল ডকুমেন্টকে হুবহু ছেপে বের করে।

কম্পিউটার (Computer)

এ যুগ তথ্য ও প্রযুক্তির যুগ। তথ্য প্রযুক্তি ও যোগাযোগসহ জীবনের প্রতিটি ক্ষেত্রে কম্পিউটারের ব্যবহার এত বেশি যে এ যুগকে কম্পিউটারের যুগও বলা হয়। আমাদের দৈনন্দিন জীবনের কাজকর্মের অনেক কিছুই কম্পিউটারের ব্যবহার হারা প্রভাবিত হচ্ছে। বিজ্ঞান ও প্রযুক্তি বিষয়ে কম্পিউটার হয়ে উঠেছে অপরিহার্য। কম্পিউটার গাণিতিক হিসাব করতে পারে, গাণিতিক যুক্তি দিতে পারে। গাণিতিক হিসাব ছাড়াও কম্পিউটার কোনো কিছু পছন্দ করা বা নির্বাচন করা, নকল করা, তুলনা করা, ধারাবাহিকভাবে সাজানো ইত্যাদি বিভিন্ন কাজ করতে পারে। ব্যবসা, বাণিজ্য, প্রশাসন, শিক্ষা, শিক্ষ, চিকিৎসা, যোগাযোগ, প্রতিরক্ষা, বিনোদন প্রভৃতি ক্ষেত্রে কম্পিউটারের প্রয়োগ দিন দিন বেড়ে চলেছে।

কম্পিউটার কী


কম্পিউটার শব্দের অর্থ গণক বা হিসাবকারী। কম্পিউটার শৃধু একটি হিসাবকারী যশ্তরই নয়, আরো অনেক কিছু। কম্পিউটার হলো একটি ইলেকট্রনিক ডিভাইস যা উপান্ত গ্রহণ,প্রক্রিয়াকরণ, রূপান্তর,সংরক্ষণ ও প্রেরণ করে। যে ধরনের কম্পিউটারই হোকনা কেন, প্রতিটি কম্পিউটার প্রোগ্রামকৃত নির্দেশ দারা নিয়ন্ত্রিত হয়, যা কম্পিউটারকে বলে দেয় তাকে কী করতে হবে ?

চিত্র ১৩.১৫ : কম্পিউটার

কম্পিউটারের গঠন

কম্পিউটার একটি উন্নত ইলেকট্রনিক ব্যবস্থা। কম্পিউটার তথ্য সপ্তাহ করে, সুনির্দিষ্ট নির্দেশ অনুযায়ী তথ্যকে প্রক্রিয়াজাত করে এবং প্রয়োজনানুযায়ী ফলাফল উপস্থাপন করে। কম্পিউটার যেখানে তথ্য গ্রহণ করে তাকে বলা হয় ক্ষর্তগামী (Input) বা গ্রহণমুখ। এখানে কম্পিউটারের উপান্ত প্রদান করা হয়। এজন্য যেসব ইনপুট ডিভাইস সাধারণত ব্যবহার করা হয় তাহলো কীবোর্ড, মাউস টাচপ্যাড, স্ক্যানার, ডিজিটাল ক্যামেরা ও মাইক্রোফোন। যেখানে তথ্য প্রক্রিয়াজাত করে তাকে বলা হয় সিপিইউ বা ক্ষেণ্রীয় প্রক্রিয়াকরণ ইউনিট (Central Processing Unit)। কেন্দ্রীয় প্রক্রিয়াকরণ ইউনিট থাকে মৃতি ইউনিট, নিয়ন্দ্রণ ইউনিট ও গাণিতিক যুক্তি ইউনিট। যে প্রান্ত থেকে ফলাফল পাওয়া যায় তাকে বলা হয় বহির্গামী (Out put) বা নির্গমণ মুখ। আউটপুট ডিভাইস হিসাবে প্রধানত থাকে মনিটর, স্পীকার ও প্রিন্টার। এদের মাধ্যমে প্রক্রিয়াকৃত ডেটা বা উপান্ত আমরা পাই। নিচে কম্পিউটারের একটি মৌলিক কাঠামো দেওয়া হলো:

চিত্র: ১৩.১৬: কম্পিউটারের গঠন

যে সকল ভৌত ডিভাইস দিয়ে কম্পিউটার তৈরি তাদের বলা হয় হার্ডওয়্যার। যেমন—কীবোর্ড, মাউস, প্রসেসর, মনিটর, প্রিটার ইত্যাদি। সফটওয়্যার হলো কতগুলো নির্দেশনা যার ভিত্তিতে কম্পিউটার কাজ করে। এগুলোকে সাধারণত কম্পিউটার প্রোগ্রাম বলা হয়। প্রয়োজনের উপর ভিত্তিকরে কম্পিউটার প্রোগ্রামাররা প্রতিনিয়ত নানা ধরনের সফটওয়্যার তৈরি করছে। হার্ডওয়্যার হলো কম্পিউটারের দেহ এবং সফটওয়্যার হলো কম্পিউটারের প্রাণ।

এর কাজ করার দুততা, তথ্য জমা করে রাখার ক্ষমতা, সঞ্চাতিপূর্ণতা, নির্ভূপতা, ক্লান্তিহীনতা ও স্বয়ংক্রিয়তা জন্য কম্পিউটার অত্যন্ত প্রয়োজনীয় যশত্র হিসেবে বিবেচিত। কম্পিউটার দুত কাজ করতে পারে, সেকেন্ডে হাজার হাজার, লক্ষ লক্ষ গাণিতিক হিসাব করতে পারে।

কম্পিউটারের ব্যবহার

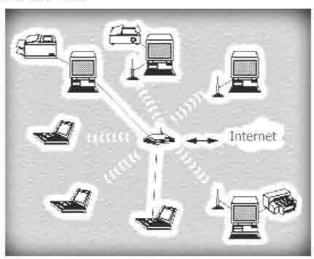
আমাদের জীবনের বিভিন্ন ক্ষেত্রে কম্পিউটার ব্যবহৃত হচ্ছে। কম্পিউটার ব্যবহারের ক্ষেত্রগুলা হলো:

চিকিৎসা : রোগীর অ্যাপয়েশ্টমেশ্ট, পরিচয়, ঠিকানা, রোগের লক্ষণ, ইত্যাদি রেকর্ড করে রাখা, ঔষধ নির্বাচন, চোখ পরীক্ষা, এক্সরে বা অন্যান্য পরীক্ষা, হার্ট অপারেশন ও চিকিৎসা গবেষণায় কম্পিউটার ব্যবহৃত হয়।

ব্যবসা বাণিচ্চ্য : পণ্যের মজুদ নিয়ন্ত্রণ, ব্যবসায়িক যোগাযোগ, টিকেট বুকিং, ব্যার্থকিং সিস্টেম, স্টাফদের বেতন, আয়—ব্যয়ের বাজেট ও হিসাব নিয়ন্ত্রণ ইত্যাদি ব্যবসায়িক কাজে কম্পিউটার ব্যবহৃত হয়।

যাতায়াত ব্যবস্থা : জাহাজ, বিমান ও মোটরগাড়ি, ট্রেন ইত্যাদি যানবাহনের ট্রাফিক কন্ট্রোল, গতি নিয়ন্ত্রণ, টিকেট বুকিং ইত্যাদি কাজে কম্পিউটার ব্যবহৃত হয়। এছাড়া মহাশুন্যযান পাঠানো, নিয়ন্ত্রণ, চালনা ইত্যাদিতে কম্পিউটার ব্যবহৃত হচ্ছে।

শিল্প কারখানা : পণ্য উৎপাদনে স্বয়থক্রিয় নিয়ম্ত্রণ, পণ্যের গুণগত মান যাচাই, তথ্য সংগ্রহ, কর্মচারীদের বেতন—ভাতা, কাজের সিডিওলের হিসাব ইত্যাদি কাজে কম্পিউটার ব্যবহৃত হচ্ছে। পারমাণবিক রিএ্যাক্টর চালনা বা এ ধরনের জটিল ও আধুনিক সব যম্ত্রের ব্যবহারে কম্পিউটার অপরিহার্য।


শিক্ষা : শ্রেণিকক্ষে শিক্ষণ, স্বশিধন, পরীক্ষার উত্তরপত্র মূল্যায়ন ও ফলাব্দল প্রকাশ ইত্যাদি কাজে কম্পিউটার ব্যবহৃত হয়।

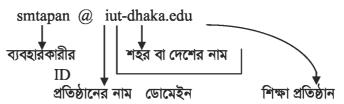
প্রতিরক্ষা : সেনাবাহিনী পরিচালনা, আশ্লেয়াস্ত্র নিয়ন্ত্রণ, যোগাযোগ ইত্যাদি কাজে কম্পিউটার ব্যবহৃত হয়। গবেষণা : বিভিন্ন গবেষণা কর্মে কম্পিউটারের ব্যবহার দিন দিন বাড়ছে।

মুদ্রশ: কম্পিউটারের ব্যবহার মূদ্রণ শিল্পে বিপ্লব এনেছে। মূদ্রণের জন্য কম্পোজ, ডিজাইন ইত্যাদি কাজে কম্পিউটার ব্যবহারের কলে অস্বাভাবিক মূদ্রণ ব্যর কমে এসেছে।

ইন্টারনেট ও ইমেইল (Internet and e-mail) : ইন্টারনেট ও ইমেইল এর নাম তোমরা নিন্টরই শুনেছ। যারা শহরে বাস কর তাদের অনেকে বাসায় বা স্কুলে হয়ত ইন্টারনেট ব্যবহার করে ইমেইল পাঠিয়েছ। কিন্তু তোমরা যারা গ্রামে বাস কর তাদের অনেকে হয়ত ইমেইল ও ক্যান্সের দোকান থেকে আজীরস্ক্রন বা কন্দ্বান্দবকে ইমেইল পাঠিয়েছ। ইমেইল বর্তমানে বহুল ব্যবহুত ডাক মাধ্যম।

ইন্টারনেট কী ? ইন্টারনেট হলো 'নেটওয়ার্কের নেটওয়ার্ক' বা 'সকল নেটওয়ার্কের জননী'। এটি একটি আম্ভর্জাতিক নেটওয়ার্ক যা সংযুক্ত করেছে বিভিন্ন দেশের প্রায় ৪,০০,০০০ এর বেশি ছোট ছোট নেটওয়ার্ককে। ১৯৬৯ সালে আমেরিকান প্রতিরক্ষা বিভাগ ইন্টারনেট চালু করেছে। ইন্টারনেট হলো এমন একদল নেটওয়ার্ক যা অসংখ্য কম্পিউটার, মোডেম, টেলিফোন লাইন দিয়ে তৈরি। এসব উপাদান পরস্পরের সাথে ভৌতভাবে সংযুক্ত। এ নেটওয়ার্ক পরস্পরের সাথে যেকোনো তথ্য বা উপান্ত আদান প্রদানে সক্ষম। ইন্টারনেট অনেকগুলো নেটওয়ার্কের সমষ্টি এবং সকলে মিলে একটি একক নেটওয়ার্কের মতো কাক্ষ করে।

চিত্র: ১৩.১৭ ইন্টারনেট যেভাবে কাজ করে


ইন্টারনেটের মাধ্যমে আমরা ওয়েব সাইট ব্রাউঞ্জিং করতে পারি, ইমেইল পাঠাতে এবং গ্রহণ করতে পারি ও তিডিও কনকারেনসিং করতে পারি। আড্ডা দিতে পারি এবং গল গুলব করতে পারি,ট্রেন, বাস বা প্রেনের টিকিট বৃকিং দিতে পারি এবং ইলেকট্রনিক কমার্স বা ব্যবসাবাণিজ্য, ইব্যার্থকিং ও শিশিং করতে পারি। ইলেকট্রনিকভাবে বেকোনো ফাইল, ডক্মেন্ট ইত্যাদি পাঠাতে ও গ্রহণ করতে পারি। এছাড়া বেকোনো সময় অনলাইন লাইব্রেরির হাজারহাজার, লক লক বই, জার্নাল, ম্যাগান্তিন ইত্যাদির সম্খান পেতে পারি এবং প্রয়োজনে পাঠ করতে পারি অথবা 'ডাউনলোড' করে ছেপে কের করে নিতে পারি।

ইমেইল: ইলেকট্রনিক মেইলকে সংক্ষেপে বলা হয় ইমেইল। ইমেইল হলো ইন্টানেটের মাধ্যমে বন্ধু—বান্ধব, সহপাঠি, আত্মীয়সজন বা সহকর্মীদের সাথে দ্রুত এবং দক্ষ যোগাযোগের উপায়। এই মেইল বা চিঠি পাঠাতে কোনো স্ট্যাম্প, পোস্টকার্ড বা এনভেলপ বা কোনো ডাকপিয়নের দরকার হয় না। ইন্টারনেটের সাহায্যে এক কম্পিউটার থেকে অন্য কম্পিউটারে চিঠি পাঠানো ও গ্রহণ করা যায়, ডকুমেন্ট, চিত্র, ছবি এবং যেকোনো তথ্য আদানপ্রদান করা যায়। ইমেইল কীভাবে পাঠানো হয় তার একটি ব্লক চিত্র নিচে দেওয়া হলো:

চিত্র : ১৩.১৮ : ইমেইল গ্রহণ ও প্রেরণ

ইমেইল, ইলেকট্রনিক মেসেজ বা বার্তা ও ফাইলকে এক বা একাধিক ইলেকট্রনিক মেইলবক্স বা ডাকবক্সে বন্টন করে। কয়েক সেকেন্ডের মধ্যে ইমেইল বার্তা পৃথিবীর এক প্রান্ত থেকে অন্য প্রান্তে পৌছে যেতে পারে এবং বিশ্বের যেকোনো প্রান্ত থেকে বার্তা সেকেন্ডের মধ্যে আসতেও পারে। ইমেইল ব্যবহারের জন্য প্রেরক ও গ্রাহক উভয়ের প্রয়োজন হয় ইমেইল এড্রেস বা ঠিকানার। নিচের ইমেইল এড্রেসটি লক্ষ কর ঃ

আরও একটি সহজ ইমেইল এড্রেস হতে পারে,

smtapan@gmail.com

তথ্য ও যোগাযোগ সম্পর্কিত যদত্রপাতির কার্যকর ব্যবহার

যোগাযোগের জন্য আমরা ব্যবহার করছি নানান রকম যন্ত্রপাতি যেমন ফোন (ল্যান্ড, মোবাইল ও কর্ডলেস), রেডিও, টেলিভিশন, ফ্যাক্স মেশিন, কম্পিউটার ইত্যাদি। এসব যন্ত্রপাতি ব্যবহারের ফলে পৃথিবী যেমন চলে এসেছে আমাদের হাতের মুঠোয়, তেমনি সৃষ্টি হয়েছে নানান রকম সমস্যা। সুতরাং এদের থেকে সর্বোচ্চ সুবিধা পেতে এদের কার্যকর ব্যবহার করতে হবে।

আমাদের দেশে বিদ্যুতের খুব অভাব তাই এসব ডিভাইস অযথা ব্যবহার করে বিদ্যুতের অপচয় করব না। অনেকে আধুনিক যোগাযোগ ব্যবস্থাকে ব্যবহার করে নানান রকম অপরাধমূলক কাজ করে। এদের থেকে সাবধান হব এবং এর সাহায্যে আমরা নিজেরাও কোনো অপরাধের কাজ করব না।

অধিকক্ষণ ধরে কম্পিউটার ব্যবহার করব না। কারণ, যারা অধিকক্ষণ ধরে কম্পিউটার নিয়ে কাজ করেন, কম্পিউটারের কীবোর্ড ও মাউসের দীর্ঘক্ষণ ও দীর্ঘদিন ব্যবহারের ফলে তাদের হাতের রগ, স্নায়ু, কজি, বাহুতে, কাঁধ ও ঘাড়ে অতিরিক্ত টান (stress) বা চাপ পড়ে। ফলে কাজের ফাঁকে যথেষ্ট বিশ্রাম না নিলে এসব অজ্ঞো ব্যথাসহ নানান রকম সমস্যার সৃষ্টি হতে পারে। এসব সমস্যার মধ্যে রয়েছে হাত, বাহু ও আঙুলের ব্যথা, আঙুল ফুলে যাওয়া ইত্যাদি।

কাজের ফাঁকে ফাঁকে বিশ্রাম না নিয়ে দীর্ঘদিন ও দীর্ঘক্ষণ কম্পিউটারে কাজ করলে চোখে নানান রকম সমস্যার সৃস্টি হয়, একে বলা হয় কম্পিউটার ভিশন সিনড্রোম। এই সিনড্রোমের মধ্যে রয়েছে চোখ জ্বালা পোড়া করা, চোখ শুষ্ক হয়ে যাওয়া, চোখ চূলকানো, চোখ লাল হয়ে যাওয়া এবং চোখের পানি শুকিয়ে যাওয়া।

কম্পিউটারে কাজ করার সময় সঠিকভাবে বসতে হবে এবং সোজা সামনে তাকাতে হবে। টাইপ করার সময় হাত যেন কোনো কিছুর উপর রাখা না থাকে এবং হাত ও আঙুল যেন সোজা থাকে। কম্পিউটারের স্ক্রিন বা পর্দাটি যেন অবশ্যই চোখ হতে ২০ থেকে ২৪ ইঞ্চি (প্রায় ৫০—৬০ সেমি) দূরে থাকে। মাখার উপর বাতির আলো এবং টেবিলের বাতির আলো এমনভাবে কমিয়ে দিতে হবে যেন তোমার চোখে বা কম্পিউটারের পর্দায় তা না পড়ে।

রেডিও এবং টেলিভিশন থেকে যে সমস্যা দেখা দেয় তা প্রধানত শব্দদূষণজনিত স্বাস্থ্য সমস্যা। আমরা অনেকে খুব হাইভিলিয়ুমে রেডিও ও টেলিভিশন চালাই। এতে নিজের কানের যেমন সমস্যা সৃষ্টি হতে পারে, তেমনি আমাদের আশেপাশের বাড়িতে যারা বাস করেন, তাদের মধ্যে যদি উচ্চ রক্তচাপে আক্রান্ত রোগী এবং হুদরোগী থাকেন বা অন্য যেকোনো অসুস্থ রোগী থাকেন শব্দ দূষণজনিত কারণে তারা আরও বেশি অসুস্থতা ও অস্থিরতা বোধ করতে পারেন। যারা খুব বেশি শব্দে রেডিও বা টিভি চালান, তারা মাথা ব্যথা, কানে কম শোনা, অবসনুতা ইত্যাদি স্বাস্থ্য সমস্যায় পড়তে পারেন। সুতরাং বেশি জ্যোরে টিভি ও রেডিও চালাব না।

অনেকে মোবাইল ফোন ব্যবহার করে মানুষকে বিরক্ত করে। এসব কাজ থেকে আমাদের বিরত থাকতে হবে।

जनू शिषनी

ক. বহুনির্বাচনী প্রশ্ন

সঠিক উত্তরের পাশে টিক $(\sqrt{})$ চিহ্ন দাও

- ১। তেজস্ক্রিয় মৌল থেকে নির্গত আলফা কণা কী?
 - (ক) একটি হাইড্রোজেন নিউক্লিয়াস
- (খ) একটি হিলিয়াম নিউক্লিয়াস
- (গ) একটি তড়িৎ নিরপেক্ষ কণা
- (ঘ) একটি ঋণাত্মক কণা
- ২। তেজস্ক্রিয় ক্ষয়ের ফলে যে বিটারশ্মি নির্গত হয় তা আসলে কী?
 - (ক) ঋণাত্মক ইলেকট্রনের স্রোত
- (খ) একটি তড়িৎ নিরপেক্ষ কণা
- (গ) একটি ধনাত্মক নিউক্লিয়াস
- (ঘ) ধনাত্মক প্রোটনের স্রোত
- ৩। কোন সিলিকন চিপে লক্ষ লক্ষ বর্তনী সংযোজিত হলে তাকে কী বলে?
 - (ক) সমান্তরাল বর্তনী

(খ) অর্ধপরিবাহী ট্রানজিস্টর

(গ) সমন্বিত বর্তনী

- (ঘ) অর্ধপরিবাহী ডায়োড
- ৪। টেলিভিশন সম্প্রচারে ক্যামেরার কাজ কী?
 - (ক) ছবিকে তড়িৎ সংকেতে রূপান্তর করা
- (খ) ছবিকে শব্দ তরক্ষো রূপান্তর করা
- (গ) তড়িৎ সংকেতকে ছবিতে রূপান্তর করা
- (ঘ) শব্দ তরঞ্চাকে ছবিতে রূপান্তর করা

খ. সৃজনশীল প্রশ্ন

১। ছোট হয়ে আসছে পৃথিবী, আমরা বাস করছি গ্লোবাল ভিলেজে। তথ্য ও যোগাযোগ প্রযুক্তি পৃথিবীর সকল মানুষকে কার্যকর ও দক্ষতার সাথে সংযুক্ত করেছে। যোগাযোগের প্রধান বাহনগুলো হচ্ছে টেলিভিশন, রেডিও এবং টেলিফোন।

- (ক) যোগাযোগ যলত্র কাকে বলে?
- (খ) কীভাবে টেলিফোন কাজ করে ব্যাখ্যা কর।
- (গ) কীভাবে রেডিও স্টেশন নির্দিষ্ট কম্পাজ্কের সংকেত সঞ্চালন করে এবং তা গ্রাহকের নিকট পৌঁছায়, চিত্রসহ ব্যাখ্যা কর।
- (ঘ) যোগাযোগের যন্ত্র হিসাবে টেলিভিশন ও রেডিওর কার্যকারিতা বিশ্লেষণ ও তুলনা কর।
- ২। শ্রীলজ্ঞার প্রেমাদাসা স্টেডিয়ামে বাংলাদেশ ও ভারতের মধ্যে অনুষ্ঠিত খেলাটি ভূউপগ্রহের মাধ্যমে বিটিভি সম্প্রচার করছে।ফলে ঘরে বসেই টেলিভিশনে খেলাটি উপভোগ করা যাচ্ছে।
 - (ক) এনালগ সংকেত কাকে বলে?
 - (খ) চিত্রের সাহয্যে একটি ডিজিটাল সংকেত ব্যাখ্যা কর।
 - (গ) টেলিভিশনে খেলাটির সম্প্রচার কৌশল ব্যাখ্যা কর।
 - (ঘ) এ ধরনের যোগাযোগ প্রযুক্তি জীবনমানকে কীভাবে উনুত করছে –আলোচনা কর।

গ. সাধারণ প্রশ্ন

- ১। তেজস্ক্রিয়তা কী ব্যাখ্যা কর।
- ২। আলফা ও বিটা কণার পার্থক্য ব্যাখ্যা কর।
- ৩। সমন্বিত বর্তনী কী?
- ৪। ইন্টারনেট কাকে বলে? এর দ্বারা কী কী কাজ করা যায়?
- ে। ফ্যাক্স কীভাবে কাজ করে বর্ণনা কর।

চতুর্দশ অধ্যায়

জীবন বাঁচাতে পদার্থবিজ্ঞান

PHYSICS TO SAVE LIFE

পেদার্থবিজ্ঞানের সাথে জীববিজ্ঞানের সম্পর্ক স্থাপন করে একটি নতুন বিষয়ের বিকাশ ঘটেছে তার নাম জীবপদার্থবিজ্ঞান। বেঁচে থাকার জন্য আমাদের দরকার সুস্থ, সবদ ও নিরোগ দেহ। সুস্থ থাকার জন্য প্রয়োজন সঠিক চিকিৎসা। চিকিৎসা বিজ্ঞানে রোগ নির্দিয় অত্যন্ত গুরুত্বপূর্ণ বিষয়। পদার্থবিজ্ঞানের বিভিন্ন তত্ত্ব ও নীতির উপর ভিত্তি করে তৈরি হয়েছে নানা ধরনের চিকিৎসা যন্দ্রগাতি। এসকল যন্দ্রগাতি পদার্থবিজ্ঞানের কোনো নীতি বা তত্ত্বকে কাজে লাগিয়ে কাজ করে। এমন কিছু যন্দ্রপাতি সম্পর্কে এ অধ্যায়ে আলোচনা করা হবে।

এই অধ্যায় পাঠ শেবে আমরা-

- জীবপদার্থবিজ্ঞানের ভিত্তি ব্যাখ্যা করতে পারব।
- ২. জীবপদার্থবিজ্ঞানে জগদীশচন্দ্র বসূর অবদান ব্যাখ্যা করতে পারব।
- মানবদেহ পদার্থবিজ্ঞানের নিয়মে পরিচাশিত হয় তা ব্যাখ্যা করতে পারব।
- চিকিৎসা বিজ্ঞানে রোগ নির্ণয়ে ব্যবহৃত যশ্ত্রপাতিতে পদার্থবিজ্ঞানের ধারণা ও তত্ত্বের ব্যবহার ব্যাখ্যা করতে পারব।
- লাধুনিক প্রযুক্তি এবং যশত্রপাতি ব্যবহারের ফলে সৃষ্ট স্বাস্থ্য সমস্যা এবং প্রতিরোধের কৌশল ব্যাখ্যা করতে
 পারব।
- ৬. সঠিক চিকিৎসার জন্য রোগ নির্ণয়ের প্রয়োজনীয়তা সম্পর্কে নিজে সচেতন হবো এবং অন্যদের সচেতন করতে পারব।
- ৭. রোগ নির্ণয়ে বিজ্ঞান ও প্রযুক্তির প্রশংসা করতে পারব।

১৪.১ জীবপদার্থবিজ্ঞান এর ভিন্তি Background of bio-physics

জীবপদার্থবিজ্ঞান হলো এমন এক বিজ্ঞান যা বিজ্ঞানের অনেকগুলো শাখার উপর ভিত্তি করে প্রতিষ্ঠিত হয়েছে। জীবপদার্থবিজ্ঞানে জীববিজ্ঞানের কোনো ব্যবস্থাকে অধ্যয়নের জন্য ভৌতবিজ্ঞানের তত্ত্ব ও পদ্বতি ব্যবহার করা হয়। জীববিজ্ঞান হলো জীবজগৎ অধ্যয়নের বিজ্ঞান। কীভাবে উদ্ভিদ ও প্রাণী খাদ্য আহরণ করে, যোগাযোগ রক্ষা করে, পরিবেশ সম্পর্কে উপলব্দি লাভ করে এবং বংশবৃদ্ধি করে এ বিষয়গুলো জীববিজ্ঞানে বর্ণনা করা হয়। অন্যদিকে প্রকৃতি যে সব গাণিতিক নিয়ম মেনে চলে সেগুলো হলো পদার্থবিজ্ঞানের আলোচ্য বিষয়। দীর্ঘদিন একটি ধারণা বিজ্ঞানীরা পোষণ করে এসেছেন যে জীবজগতের নিয়ম ও ভৌতজগতের নিয়ম আলাদা। কিন্তু ভৌতবিজ্ঞান ও জীববিজ্ঞানের অগ্রগতির ভিতর দিয়ে এই দুই আপাত ভিন্ন শৃঙ্খলার মধ্যে গভীর মিল পাওয়া গেছে। প্রথমে পদার্থবিজ্ঞান ও জীববিজ্ঞান দুইটি ভিন্ন বিষয় হিসেবে বিকাশ লাভ করেছে। বিজ্ঞানের অগ্রগতির মধ্য দিয়ে এই দুই বিষয়ের মধ্যে পারস্পরিক সম্পর্ক ও সমন্বয় অনেক বৃদ্ধি পেয়েছে। আগে মনে করা হতো প্রাণিজগত ভিন্ন এক নিয়মে চলে এবং জড় পদার্থের ক্ষেত্রে শৃধু ভৌতবিজ্ঞানের নিয়মগুলো প্রযোজ্য। কিন্তু আমরা এখন জানি প্রাণিদেহকে অনেক দিক থেকে যন্তেরর সজ্যে তুলনা করা যায় এবং প্রাণিদেহের অনেক আচরণকে ভৌত নিয়ম ঘারা ব্যাখ্যা করা সম্ভব। বস্তুত পদার্থবিজ্ঞানের নিয়মগুলো সার্বজনীন। ফলে শৃধু জড়জগত নয়, প্রাণিজগতকেও পদার্থবিজ্ঞানের নিয়মে অনেক ক্ষেত্রে ব্যাখ্যা করা সম্ভব। এটিই জীবপদার্থবিজ্ঞানের ভিন্তি।

জীবপদার্থবিজ্ঞানের চ্যালেঞ্জ হলো কীভাবে জীবনের নানা জটিলতাকে পদার্থবিজ্ঞানের সহজ নিয়মের ভিত্তিতে ব্যাখ্যা করা যায়। গণিত এবং পদার্থবিজ্ঞান ব্যবহার করে জীবনের নানাবিধ রহস্য অনুসম্পান ও বিভিন্ন ঘটনা বিশ্লেষণের মাধ্যমে এর গভীরে প্রবেশ করার শক্তিশালী মাধ্যম হলো জীবপদার্থবিজ্ঞান। জীবপদার্থবিজ্ঞান হলো জীববিজ্ঞান এবং পদার্থবিজ্ঞানের মধ্যে সেতুবন্ধ স্বরূপ।

১৪.২ জগদীশচন্দ্র বসুর অবদান

Contributions of Jagadish Chandra Bose

আচার্য স্যার জগদীশচন্দ্র বসু ছিলেন একাধারে একজন প্রখ্যাত পদার্থবিজ্ঞানী, অন্যদিকে একজন জীববিজ্ঞানী। আমদের উপমহাদেশে তিনিই প্রথম আন্তর্জাতিক স্বীকৃতিপ্রান্ত বিজ্ঞানী। বসু পরিবারের আদি নিবাস ছিল ঢাকা জেলার অন্তর্গত বিক্রমপুরের রাঢ়িখাল নামক গ্রামে। ১৮৫৮ সালের ৩০ নভেন্দর জগদীশচন্দ্র বসু ময়মনসিংহে জন্মগ্রহণ করেন। পিতা ভগবানচন্দ্র বসু ফরিদপুর জেলার একজন ডেপুটি ম্যাজিস্ট্রেট ছিলেন। প্রথমে ফরিদপুরের গ্রামীণ বিদ্যালয়ে মাতৃভাষায় লেখাপড়া শুরু করেন। পরে কোলকাতার হেয়ার স্কুল ও সেন্ট জেভিয়ার স্কুল ও কলেজে তাঁর ছাত্রজীবন অতিবাহিত হয়। ১৮৮০ সালে বি.এ পাশ করার পর ঐ বছরই তিনি উচ্চ শিক্ষার জন্য ইংল্যান্ড যান। ইংল্যান্ডে তার শিক্ষা জীবন ছিল ১৮৮০—১৮৮৪ সাল পর্যন্ত। ঐ সময়ে তিনি ক্যান্দ্রিজ বিশ্ববিদ্যালয় থেকে পদার্থবিজ্ঞানে অনার্সসহ বি.এ এবং লন্ডন বিশ্ববিদ্যালয় থেকে বি.এসসি. ডিগ্রি অর্জন করেন। ১৮৮৫ সালে তিনি প্রেসিডেন্সি কলেজে পদার্থবিজ্ঞান বিষয়ে অধ্যাপনা শুরু করেন। প্রেসিডেন্সি কলেজে গবেষণার তেমন সুযোগ না থাকা সত্ত্বেও তিনি সেখানে গবেষণার কাজ চালিয়ে যান। দিনের বেলায় সময় না থাকায় বেশিরভাগ সময় তাঁকে রাতের বেলায় গবেষণার কাজ করতে হতো।

গবেষণাগারে তিনি কীভাবে দূরবর্তী স্থানে তারের সাহায্য ছাড়া কোনো রেডিগু সংকেতকে পাঠানো যায় এ বিষয়ে

বিস্তর গবেষণা করেন এবং সফল হন। ১৮৯৫ সালে তিনি ইতিহাসে প্রথম বারের মতো দূরবর্তী স্থানে বিনা তারে রেডিও সংকেত প্রেরণ করে ছনসমক্ষে দেখান। মাইক্রোওয়েত গবেষণার ক্ষেত্রে তাঁর উল্লেখযোগ্য অবদান রয়েছে। তিনিই প্রথম উৎপন্ন তরজ্ঞার তরজ্ঞাদৈর্ঘ্যকে মিলিমিটার (প্রায় ৫ মিলিমিটার) পর্যায়ে নামিয়ে আনতে সক্ষম হন। তিনিই প্রথম রেডিও সংকেতকে সনাক্ত করার কাজে অর্থপরিবাহি জাংশনের ব্যবহার করেন। এই আবিম্কার থেকে ব্যবসায়িক সুবিধা নেওয়ার পরিবর্তে তিনি তাঁর আবিষ্কারকে সবার জন্য উন্যুক্ত করে দেন, যেন জন্যরা এই গবেষণাকে জারো সমৃন্ধ করার সুযোগ পায়।

পরবর্তীকালে জগদীশচন্দ্র বসু উদ্ভিদ শারীরতত্ত্বের উপর অনেকগুলো গুরুত্বপূর্ণ এবং উল্লেখযোগ্য আবিষ্কার করেন। এগুলোর মধ্যে উদ্ভিদের

চিত্র ১৪.১: আচার্য স্যার জগদীশচনদ্র বসু

বৃন্ধি রেকর্ড করার জন্য 'ক্রেস্কেছাফ' আবিষ্কার, অতিসীমিত মাত্রায় নড়াচড়া এবং কীভাবে উদ্ভিদ বিভিন্ন উদ্দীপকের প্রতি সাড়া দেয় তা উলেখযোগ্য।

জীবপদার্থিবিজ্ঞানে তাঁর উল্লেখযোগ্য অবদান হলো, উদ্ভিদ কীভাবে উদ্দীপকের প্রতি সাড়া দেয়, এর পরিবহনের প্রকৃতি নিয়ে। আগে ধারণা করা হতো বিভিন্ন উদ্দীপনায় উদ্ভিদের সাড়া দেওয়ার প্রকৃতি রাসায়নিক কিল্ডু তিনি দেখাতে সমর্থ হলেন যে এর প্রকৃতি বৈদ্যুতিক।

১৯১৭ সালে উদ্ভিদ শারীরতত্ত্ব নিয়ে গবেষণার জন্য তিনি কলকাতায় 'বসু বিজ্ঞান মন্দির' প্রতিষ্ঠা করেন। জগদীশচন্দ্র বসুর বাংলা ভাষায় রচিত রচনাবলী 'অব্যক্ত' নামক গ্রন্থে সংকলিত হয়েছে। তাঁর উল্লেখযোগ্য একটি গ্রন্থ হলো 'Response in the Living and Non-Living'। ১৯৩৭ সালের ২৩ শে নভেম্বর জগদীশচন্দ্র বসু মৃত্যুবরণ করেন।

১৪.৩ মানবদেহ এবং যদত্ত

Human body and machine

প্রাত্যহিক জীবনের বিভিন্ন প্রয়োজনে আমরা নানা ধরনের যন্ত্র ব্যবহার করি। যেমন– অটোমোবাইল, ব্রেফ্রিজারেটর, টেলিভিশন, বাষ্পীয় ইঞ্জিন, অন্তর্দহন ইঞ্জিন ইত্যাদি। মানবদেহকে অনেকে একটি যনত্ররূপে অভিহিত করে থাকেন। যদিও মানবদেহ আসলে বদত্র নয়, তবু এটি জনেকাংশে বন্দেত্রর ন্যায় আচরণ করে। বন্দেত্রর মতো এটিও জনেকগুলো ক্ষুদ্র ক্ষুদ্র বংশ বা বঞ্চা নিয়ে গঠিত; যার একটির বভাবে বা বিকল হয়ে যাওয়ায় সম্পূর্ণ দেহের কর্মকান্ড বিশ্লিত হয়। যশ্কের প্রত্যেকটি অংশ যেমনিভাবে বিশেষ কান্ধ সম্পন্ন করে, তেমনিভাবে মানবদেহের প্রত্যেকটি অক্তা আলাদা আলাদা কান্ধে নিয়োজিত। মানবদেহের প্রত্যেকটি অঞ্চা একে অন্যের সাথে আল্ডসম্পর্কিত, প্রত্যেকটি অঞ্চা নিজস্ব গতিতে চলে, কিন্তু সকালো কাছই সুনির্দিষ্ট এবং এদের মধ্যে পূর্বনির্ধারিত সম্পর্ক রয়েছে। এ কারণেই মানবদেহ মানবসৃষ্ট সবচেয়ে জটিল যশ্তের সমত্ন্য।

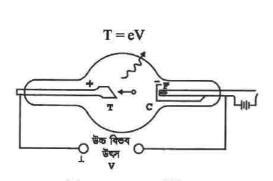
মানবদেহের এমন অংশগুলোর মধ্যে রয়েছে হুৎয়শত্র, বৃক্ক, ফুসফুস, যকৃত ইত্যাদি। উদাহরণ হিসেবে বলা যায়, হুৎপিঙ আসলে একটি স্বয়ংক্রিয় পাস্প, যা বাইরের কোনো উদ্দীপনা ছাড়াই নিজ্স বৈদ্যুতিক সিগন্যাল ঘারা সমগ্রদেহে

রক্ত সঞ্চালন করতে সক্ষম। অপরদিকে, বৃক্ক একটি বিশেষ ছাঁকন যন্দ্র যা মানুষের শরীরের নাইট্রোজেনযুক্ত বর্জ্য পদার্থ অপসারণ করে থাকে। এরকম অসংখ্য ছোট ছোট যন্দের কাজের সমন্বয়ের ফলে সম্পূর্ণ মানবদেহ সচল থাকে। মানবদেহ একটি জৈবযন্ত্র স্বরূপ। যন্ত্র ছারা কাজ করার জন্য শক্তির প্রয়োজন। বিভিন্ন ইঞ্জিনে আমরা পেট্রোল, ডিজেল, সি.এন.জি ইত্যাদি জ্বালানি ব্যবহার করে রাসায়নিক শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত করি। ঠিক তেমনিভাবে, খাদ্য গ্রহণ ও শ্বসন প্রক্রিয়ার মাধ্যমে মানবদেহও রাসায়নিক শক্তিকে তাপশক্তি ও যান্ত্রিক শক্তিতে রূপান্তরিত করে। সূত্রাৎ মানবদেহ আসলে একটি জৈবিক যন্ত্রের মতো। কিন্তু অনেক দিক দিয়ে মানবদেহ মানবস্ফ জটিলতম যন্ত্রের চেয়েও বিময়কর। মানবদেহ এমন কিছু কাজ করতে পারে, যা কোনো যন্ত্রের পক্ষে করা সম্ভব নয়। যেমন— মানুষের দেহ একটি মাত্র কোষ থেকে উৎপত্তি লাভ করে। সময়ের পরিবর্তনের সাথে সাথে এই একটি কোষই পূর্ণাজ্ঞা মানবদেহে পরিণত হয়, যা লক্ষ কোটি কোষ ছারা গঠিত। কিন্তু কোনো যন্ত্রেই এমনটি ঘটে না। কখনো শরীরের একটি মাত্র জংশ বিকল হলে সমগ্র মানবদেহের কর্মকান্ড কন্দ্র হয়ে যায়। যেমন— হুৎপিন্ডের ক্রিয়া থেমে গেলে শরীরের অন্যান্য সকল অজ্ঞাগুলোর কর্মকান্ডও কন্দ্র হয়ে যায় এবং খুব দুত মস্তিকের ক্রিয়াও থেমে যায়।

১৪.৪ রোগ নির্ণয়ে ব্যবহুত যদ্ত্রপাতি

Instruments used for diagnosis of diseases

এক সময় চিকিৎসকগণ রোগীর বাহ্যিক বিভিন্ন লক্ষণ দেখে রোগ নির্ণয় করতেন এবং সে অনুযায়ী ঔষধ ও পথ্য দিতেন। সে সময় রোগ নির্ণয়ের জন্য আধুনিক যন্ত্রপাতি আবিষ্কার হয়নি। ফলে বাইরে থেকে বিভিন্ন অজ্ঞা প্রত্যজ্ঞার সঠিক অবস্থান বোঝা যেত না। এছাড়া রোগীর কোনো নির্দিষ্ট অজ্ঞা কী মাত্রায় রোগাক্রান্ত হয়েছে, তাও জানা সম্ভব ছিল না। বিজ্ঞানের নানা আবিষ্কারকে কাজে লাগিয়ে রোগ নির্ণয়ের জন্য অনেক ধরনের যন্ত্রপাতি আবিষ্কৃত হয়েছে। এ যন্ত্রপাতিগুলোর সাহায্যে সঠিকভাবে রোগ নির্পণ করা সম্ভব হয়েছে। সঠিক যন্ত্রপাতি ছাড়া চিকিৎসকের পক্ষে সঠিকভাবে রোগ নির্পণ করা সম্ভব হয়েছে। সঠিক যন্ত্রপাতি ছাড়া চিকিৎসকের পক্ষে সঠিকভাবে রোগ নির্পণ করা সম্ভব নয়, যেটির সাহায্যে ঐ প্রয়োজনীয় পরীক্ষাটি সম্পন্ন করতে হবে। আধুনিক বিভিন্ন যন্ত্র উদ্ভাবিত হওয়ার ফলে রোগের কারণ নির্দিষ্টভাবে জানা সম্ভব হয়েছে। এক সময় অজ্ঞতার কারণে মানুষ রোগসক্রোন্ত অনেক কুসংস্কারে বিশ্বাস করতো। আধুনিক সমাজে মৃত্যুহার অনেক কমে গেছে, তার প্রধান কারণ রোগ নির্ণয় ও চিকিৎসায় বিভিন্ন ভৌত যন্ত্র ব্যবহৃত হচ্ছে।


এ অনুচ্ছেদে রোগ নির্ণয়ের জন্য সাধারণত যে সব যন্ত্রপাতি ব্যবহার করা হয় এর কয়েকটি নিয়ে আলোচনা করা হলো।

এন্সরে

X-ray

এক্সরে হলো এক ধরনের তাড়িতটৌ স্বক বিকিরণ। এক্সরের তরজ্ঞা দৈর্ঘ্য সাধারণ আলোর তরজ্ঞাদৈর্ঘ্যের চেয়ে অনেক কম। এই রশ্মির তরজ্ঞাদৈর্ঘ্য 10^{-10} m এর কাছাকাছি। ১৮৯৫ সালে উহ্লহেলোম রন্টজেন এক্সরে আবিষ্কার করেন। রঞ্জনরশ্মির আরেক নাম এক্সরে। রঞ্জনরশ্মির প্রকৃতি যখন জানা ছিল না তখন অজ্ঞানা রশ্মি হিসেবে এর নামকরণ করা হয় এক্সরে। তরজ্ঞাদৈর্ঘ্য যত ছোট হবে এক্সরের কোনো পদার্থ ভেদ করার ক্ষমতা তত বেশি হবে। সাধারণ আলো দৃশ্যমান এবং বিভিন্ন রঙে বিভক্ত কিন্তু এক্সরে দৃশ্যমান নয়। সাধারণ আলোর পথে কোনো অস্বচ্ছ পদার্থ থাকলে তা ভেদ করতে পারে না। অপরদিকে এক্সরে উচ্চ ভেদন ক্ষমতা সম্পন্ন। এক্সরে নলে এক্সরে উৎপন্ন

হয়। এক্সরে নল একটি বায়ুশুন্য কাচ নল। কাচ নলের দুইপ্রান্তে দুইটি তড়িৎঘার বা ইলেকট্রোড লাগানো থাকে। এদের একটির নাম ক্যাথোড এবং অপরটি অ্যানোড। ক্যাথোডে টাংস্টেন থাতুর একটি কুঙলী থাকে, একে ফিলামেন্ট বলে। ফিলামেন্টের মধ্য দিয়ে প্রবাহিত তড়িৎপ্রবাহ ক্যাথোডকে উক্তরত করে। ফলে ক্যাথোড থেকে ইলেকট্রন মুক্ত হয় এবং বের হয়ে আসে। ক্যাথোড এবং অ্যানোডের মধ্যে খুব উচ্চ বিভব পার্থক্য প্রয়োগ করা হলে ক্যাথোড থেকে ইলেকট্রনগুলো খুব দূতগতিতে ছুটে যায় এবং লক্ষবস্তু অ্যানোডকে আঘাত করে। দূতগতি সম্পন্ন ইলেকট্রন কোনো থাতুকে (অ্যানোড) আঘাত করলে তা থেকে অতি ক্ষ্পুর তরজাদৈর্ঘ্যের এবং উচ্চ ভেদনক্ষমতা সম্পন্ন এক প্রকার বিকিরণ উৎপন্ন হয়। এ বিকিরণকে এক্সরে বা এক্স রশ্মি বলে। চিত্র ১৪.১–এ এক্সরে টিউবের প্রয়োজনীয় অংশগুলো দেখানো হয়েছে।

চিত্র ১৪.১: এক্সরে টিউব

চিত্র ১৪.২: এক্সরে পরীক্ষা

এক্সরে নানা কাচ্ছে ব্যবহার করা যায়। রোগ নির্ণয়ের জন্য চিকিৎসা বিজ্ঞানে এর অবদান অপরিসীম।

- ১. স্থানচ্যুত হাড়, হাড়ে ফাটল, তেঙে যাওয়া হাড় ইত্যাদি এক্সরের সাহায্যে খুব সহচ্ছেই সনাক্ত করা যায়।
- ২. মুখমন্ডলের যেকোনো ধরনের রোগ নির্ণয়ে এক্সরের ব্যবহার অনেক যেমন— দাঁতের গোড়ায় ঘা এবং ক্ষয় নির্ণয়ে এক্সরে ব্যবহৃত হয়।
- ৩. পেটের এক্সরের সাহায্যে অন্তের প্রতিকশ্বকতা (Intestinal obstruction) সনাক্ত করা যায়।
- এক্সরের সাহায্যে পিন্ত থলি ও কিডনির পাধরকে সনাক্ত করা যায়।
- বুকের এক্সরের সাহায্যে ফুসফুসের রোগ যেমন
 নিউমোনিয়া, ফুসফুসের ক্যান্সার ইত্যাদি নির্ণয় করা যায়।
- ৬. চিকিৎসার কাজেও এক্সরে ব্যবহার করা যায়। এটি ক্যান্সার কোষকে মেরে ফেলতে পারে। রেডিওথেরাপি প্রয়োগ করে ক্যান্সারের চিকিৎসা করা যায়।

এন্ধরের অপ্রয়োজনীয় বিকিরণসম্পাত যাতে রোগীর ক্ষতি করতে না পারে এ ব্যাপারে প্রয়োজনীয় সতর্কতা অবশন্দন করতে হবে। এজন্য এক্সরে নেওয়ার সময় রোগীকে সীসা নির্মিত এপ্রোন ঘারা যথাসম্ভব আচ্ছাদিত করতে হবে। অতি জর্রি না হলে গর্ভবতী মহিলাদের উদর এবং পেলভিক অঞ্চলের এক্সরে করা উচিত নয়। অন্য কোনো এক্সরে পরীক্ষা প্রয়োজন হলে সীসা নির্মিত এপ্রোন অবশ্যই ব্যবহার করতে হবে।

वादीगरमधारि

Ultrasonography

আন্ত্রাসনোপ্রাধি হলো এমন একটি প্রক্রিয়া বা উচ্চ কম্পাক্ষের শব্দের প্রতিক্ষপদের উপর নির্ভয়শীল। উচ্চ কম্পাক্ষের শব্দ কান শরীরের গভীরের কোনো অভা বা গেশি থেকে প্রতিক্ষণিত হয় তথন প্রতিক্ষণিত তরভোর সাহায্যে ঐ অভোর অনুস্থাশ একটি প্রতিবিশ্ব মনিটরের গর্দায় গঠন করা হয়।

রোল নির্ণয়ের জন্য যে জান্ট্রাসনোপ্রাফি করা হয় সেই শব্দের কল্যাক 1-10 মেণাহার্টজ হয়ে থাকে। জান্ট্রাসনোপ্রাফি হালের ট্রালভিউসার নামক একটি সক্ষিক্তকে কৈন্যুভিকভাবে উদ্যোজিত বা উদ্যালিত করে উক্ত কল্যাক্তর আন্ট্রাসনিক তরজা উৎপন্ন করা হয়। আন্ট্রাসনোরাফি হলের আন্ট্রাসনিক তরজাপুলোকে একটি সরু বিমে পরিণত করা হয়। গয়ে এই বীমটিকে যে অল্যোর প্রতিবিশ্ব রেকর্ত করতে হবে ভার দিকে প্রেরণ করা হয়। যে অল্যোর দিকে এটি নির্দেশ করা হয় সেই ভলের প্রকৃতি অনুযায়ী বীমটি প্রতিক্রকাতি, পোষিত বা সংবাহিত হয়। বধন বীমটি বিভিন্ন ফনবের পেশির বেমন—মাংসপেশি, রস্তা বিজেলতকে আপতিত হয় তথন তরজাের প্রকৃতি অংশ প্রতিবানি হিসাবে প্রনাম ট্রালভিউসারে কিরে আসে। পরে এই প্রতিধানিগুলোকে ভড়িৎ সক্তেতে রূপাশ্চরিত করা হয়। এই ভড়িৎ সক্তেতপ্রণা একরে মনিটরের পর্যায় পরীজ্ঞদীর বস্তু বা পেশির একটি প্রতিবিশ্ব গঠন করে।

আন্ত্রাসনোহাতির সবচেয়ে পুরুত্বপূর্ণ ব্যবহার স্ত্রীরোগ এবং প্রসৃতিবিজ্ঞানে শক্ষ করা যায়। এর সাহায্যে কুপের আকার, পূর্ণভা, কুপের স্বাতাবিক বা অস্থাতাবিক অবস্থান জানা যায়। প্রসৃতিবিদ্যায় এটি একটি দ্রুত, নিরাপন এবং নির্ভরযোগ্য

কৌশল। আশ্রাসনোচাকির সাহাত্তে জড়ার্র চিউমার এবং অন্যান্য শেলতিক মাসের (Polvic Mass) উপস্থিতিও সমান্ত করা বার।

বিভিন্ন গরনের ডাক্তারী পরীকা বেমন— শিক্তপাধর, হুলবন্দেরর বুটি এবং টিউমার সনাক্রকরণে আন্ট্রাসনোধাম ব্যবহার করা হয়। হুংগিও পরীকা করার জন্য করন আন্ট্রাসাউত ব্যবহার করা হয় তবদ এ পরীকাকে ইকোফার্ডিওয়াকি বলে।

এমজের ত্বনার তাউলোনোগ্রাফি অধিকতর নিরাপন রোগ নির্ণর পশ্বতি। তবুও আশ্রাসাটত পুব সীমিত সমজের জন্য ব্যবহার করতে হবে। এখাড়া ট্রালডিউসারকে সকসময় নড়াচড়ার মধ্যে রাখতে হবে, বেন এটি কোনো নির্দিশ্ত স্থানে স্থির না থাকে।

চিত্র ১৪.৩ :ছান্ট্রাসনোপ্রাকি

निविञ्कान CT Scan

সিটিস্কান শব্দটি ইংরেজি Computed Tomography Scan এর সংক্রিক রুণ। চিকিৎসাবিজ্ঞানে এটি প্রতিবিদ্দ বৈরির একটি প্রক্রিয়া। যে প্রক্রিয়ার কোনো নিমান্ত্রিক কন্দুর কোনো কালি (Slice) বা ক্ষমের বিষান্ত্রিক প্রতিবিদ্দ তৈরি করা হয় সে প্রক্রিয়াকে উমোগ্রাকি কলে। সিটিস্ক্যান একটি বৃহৎ কন্দুর। এ বালের একরে ব্যবহুত হয়। একরে বেখানে শরীরের ক্ষত্যাক্তরের কোনো নিমান্ত্রিক লভাের বিষান্ত্রিক প্রতিবিদ্দ গঠন করে, সেখানে সিটি স্ক্যান বন্দ্র বারা সৃষ্ট প্রতিবিদ্দ নিমান্ত্রিক।

সিটিস্ক্যান যশ্ব ডিজিটাল জ্যামিতিক প্রক্রিয়া ব্যবহার করে কোনো বস্তুর জ্বন্তাশ্তরের ব্রিমাব্রিক প্রতিবিশ্ব গঠন করে। একটি ঘূর্বন অক্ষের সাগেকে অনেকগুলো হিমাব্রিক এক্সরে প্রতিবিশ্ব নেওয়ার পর এগুলোকে একব্রিত করে ব্রিমাব্রিক প্রতিবিশ্ব গঠন করা হয়। এ কাজটি কশিউটার ব্যবহারের মাধ্যমে সম্পন্ন করা হয়। বৃত্তাকার পথে খুরার সময় সিটিস্ক্যান যশ্ব পরপর অনেকগুলো সরু এক্সরে বীম রোগীর গরীরের মধ্য দিয়ে প্রেরণ করে। অবচ এক্সরে করার সময় রোগীর দেহে পৃথ্যাত্র একবার এক্সরে বীমটি অভিক্রম করে। কলে এক্সরের জ্বনার সিটিস্ক্যানের চিত্র অনেক নির্বৃত্ত এবং কিতৃত্ত হয়। সিটিস্ক্যান যশ্বের ব্যবহৃত এক্সরে ডিটেকটরটির সাহাব্যে রোগীর দেহের বিভিন্ন খনত্বের শত শত সতর সনাক্ত করা যায়। ডিটেকটর হারা সংগৃহীত ভাটা কম্পিউটারে প্রেরণ করা হয়। কম্পিউটার পরে শরীরের কোনো অংশের ব্রিমাত্রিক ছবি গঠন করে এবং পর্দার ভিসপ্রে করে।

চিত্র ১৪.৪: সিটিস্ক্যান যদ্ত্র

সিটিস্ক্যানের সাহাব্যে দরীরের নরম টিস্যু, রক্তবাহী দিরা বা ধমনী, কুসফুস, ব্রেন ইত্যাদির প্রিমান্ত্রিক ছবি পাওয়া বার । বক্ত, কুসকুস এবং অ্য়াদরের ক্যাদার সনাক্ত করার কান্তে সিটিস্ক্যান ব্যবহুত হর । সিটিস্ক্যানের প্রতিবিদ্দ্র চিকিৎসককে টিউমার সনাক্তকরণ, টিউমারের আকার, অবস্থান এবং টিউমারটি পাশ্ববর্তী অন্য টিস্যুকে কী পরিমাণ আক্রান্ত করেছে তা নির্ধারণেও সাহায্য করে । মাধার সিটিস্ক্যানের সাহাব্যে মস্তিক্কের ভেতরে কোনো ধরনের রক্তপাত, ধমনীর ফুলা এবং টিউমারের উপস্থিতি সম্পর্কে জানা যায় । সিটিস্ক্যানের হারা রক্ত সঞ্চালনে সমস্যা আছে কিনা তাও জানা যায় । সাধারণত পর্তবিতী মরিলাদের সিটি স্ক্যান পরীক্ষা করা হয় না । সিটি স্ক্যান পরীক্ষার 'ডাই' ব্যবহুত হলে এলার্জিজনিত বিক্রিয়ার সম্ভাবনা রয়েছে ।

এমবারবাই

Magnetic Resonance Imaging

এমজারজাই ইয়েরন্ধি Magnetic Resonance Imaging এর সংক্ষিতর্গ। এমজারজাই বন্দের শক্তিশাদী চৌম্বকক্ষের এবং রেভিও তরজা ব্যবহার করে শরীরের কোনো স্থানের বা অজ্ঞার কিভূত প্রতিবিদ্দ গঠন করা হয়। নিউক্লীর চৌম্বক অনুনাদ বা Nuclear Magnetic Resonance এর ভৌত এবং রাসায়নিক নীতির উপর ভিত্তি করে এমজারজাই বন্দ্র কাল্ল করে। এই নীতি ব্যবহার করে কোনো অণুর প্রকৃতি সম্পর্কে তথ্য জানা যায়।

২৩৪

এমআরআই হলো ব্যথাহীন এবং নিরাপদ রোগ নির্ণয় প□ জি। এই যদের একরে বা জন্য কোনো ধরনের বিকিরপ ব্যবহার করা হয় না। শরীরের যে জংশের এমআরআই স্ক্যান করা হয় সেখান থেকে প্রাশ্ত সংকেতকে একটি কম্পিটারের সাহায্যে পরিবর্তিত করে সেই জংশের অত্যন্ত সাঠ প্রতিবিচ্ছ গঠন করা হয়। প্রত্যেকটি প্রতিবিচ্ছ শরীরের কোনো স্থানের এক একটি ফালি বা ফ্লাইসের মতো কান্ত করে। এতাবে জনকপুলো প্রতিবিচ্ছ তৈরি করা হয়, বেগুলো শরীরের ঐ জংশের সকল বৈশিক্টাকে ফুটিরে জ্লে।

চিত্র ১৪.৫: এমআরকাই বল্জ

এমআরবাই এর মাধ্যমে প্রাশ্ত প্রতিবিন্দকে গাউরুটির এক একটি ফালির সক্ষো তুলনা করা বার। বধন গাউরুটি থেকে এক একটি ফালি উঠানো হয়, তখন ফালির সাথে সাথে গাউরুটির তেডরের সবটুকু দেখা যার। একইভাবে এমআরবাই এর মাধ্যমে প্রাশ্ত প্রত্যেকটি প্রতিবিন্দ শরীরের অভ্যান্ডরের সবকিছু দেখতে সাহায্য করে।

পারের পোড়ালির মচকানো একং পিঠের ব্যাধায় এমখারবাই ব্যবহার করে জখমের বা আধাকের জীব্রতা নির্পণ করা হয়। ব্রেন একং মেরু রজ্জুর (Spinal cord) বিস্তৃত প্রতিবিশ্ব তৈরির জন্য এমখারবাই ব্যাদা অভ্যন্ত মূল্যবান পরীকা।

इमिक

ECG

ইসিজি হলো ইলেকট্রোকার্ডিগুরাম (Electrocardiogram) শব্দের সর্যক্ষণত রূপ। ইসিজি এমন একটি রোগ নির্ণয় পার্রি বার সাহায্যে নিরমিতভাবে কোনো ব্যক্তির রূপেন্ডের বৈদ্যুতিক এবং পেশিজনিত কার্যক্ষণাপ পর্যবেজণ করা যায়। আমরা জানি যে, বাহিরের কোনো উদ্দীপনা ছাড়াই রূপেন্তর জুদ্র বৈদ্যুতিক সংকেত উৎপন্ন করে। এই কৈন্যুতিক সংকেত রূপ্যেশত্তর পেশির মধ্য দিয়ে হড়িয়ে পড়ে, এর ফলে রূপ্যেশত্র সংকৃতিত হয়। ইসিজি বশ্যের সাহায্যে আমরা এই তড়িং সংকেতসমূহকে সনাক্ত করি। ইসিজি এর সাহায্যে আমরা রূপেন্ডের সাদনের হায় এবং ছপময়তা পরিমাপ করতে পারি। এটি রূপিন্ডের মধ্যে রক্তপ্রাহের পরোজ প্রমাণ দেয়।

শরীরের বিভিন্ন স্থানে স্থাপিত ভড়িব্যার বা ইলেকট্রোডসমূহ ছ্ব্যম্প্রের বিভিন্ন দিক থেকে আগত বৈদ্যুতিক সন্তক্তপূলোকে সনান্ত করে। হ্বপিন্ডের একটি সম্পূর্ণ ছবি পাবার জন্য দর্শটি ইলেকট্রোড ব্যবহার করে বারোটি বৈদ্যুতিক সন্তক্তকে সনান্ত করা হয়। প্রভ্যেকটি হাতে এবং গায়ে একটি করে মোট চারটি এবং বাকী ছয়টি ইলেকট্রোড হ্বপিন্ডের প্রাচীর বরাবর স্থাপন করা হয় [চিত্র ১৪.৬]। প্রভ্যেকটি ইলেকট্রোড হারা সংস্থীত ভড়িৎ সন্তক্তকে রেকর্ড করা হয়। এই রেক্ডসমূহের মুদ্রিত রূপই হলো ইলেকট্রোকার্ডিগুরাম।

চিত্ৰ ১৪.৬: ইসিজি প🏻 ভি

সৃষ্ধ মানুষের জন্য প্রত্যেক ইলেকট্রোড থেকে প্রাণ্ড তড়িৎ সংক্রেডের একটি স্বান্তাবিক নকশা থাকে। যদি কোনো ব্যক্তির হুংবংশ্যে কোনো ধরনের অন্যান্তাবিক অবস্থা সক্ষ করা যায় তথন ইলেকট্রোডসমূহ থেকে প্রাণ্ড নকশা স্বান্তাবিক নকশা থেকে ভিন্নতর হবে।

সাধারণত কোনো রোণের বাধ্যিক লক্ষণ ঘেষন— বুক্ষের বভূকভানি, অনিয়মিত ও দুত যুক্তলগন, বুকে ব্যাধা ইত্যানির কারণ নির্ণয় করার জন্য ইসিজি পরীক্ষা করতে হয়। এছাড়াও নিয়মিত পরীক্ষার অংশ হিসেবে যেমন— অগারেশনের পূর্বে ইসিজির সাহায্য নেডরা হয়।

হুর্থপিক্তের বে সকল অস্বাভাবিক প্রকৃতি ইসিজির মাধ্যমে সনাক্ত করা বায় প্রপূদো হলো-

- ১. রূপেন্ডের অন্বাভাবিক সাদন বেমন- রূপেন্ডের সাদনের হার বেশি বা কম বা অনিয়মিত হলে;
- ২. হার্ট জ্যাটাক যা সম্প্রতি বা কিছুদিন পূর্বে সংবটিত হয়েছে;
- ৩. সম্প্রসারিত হুর্বশিষ্ঠ অর্থাৎ হুর্বশিষ্ঠের আকার বড় হরে যাওয়া।

এভোসকোপি

Endoscopy

এন্ডোসকোশি কাতে সাধারণভাবে কোনো কিছুর ভিতরে দেখাকে বুঝার। কিশ্চু এন্ডোসকোশি কাতে আমরা বৃধি চিকিৎসাজনিত কারণে বা প্ররোজনে দেহের অভ্যশতরুমধ কোনো অভা বা গহরেকে বাহির থেকে পর্যবেকণ। এন্ডোসকোশি যশ্যের মাধ্যমে আমরা শরীরের ফাঁগা অভাসমূহের অভ্যশতরভাগ গরীকা করে থাকি।

চিত্র ১৪.৭: এন্ডোসকোশি বল্জ

এভোসকোশ যদের পূইটি নশ থাকে, এনের একটির মধ্য দিরে বাইরে থেকে রোপীর শরীরের নির্দিন্ট ছাজো আলো প্রেরণ করা হর। আলোক ডম্ভুর ভিডরের দেয়ালে আলোর পূর্ণ অভ্যান্ডরীণ প্রতিকলনের মাধ্যমে উজ্জ্বল আলো রোপীর দেহ পহররে প্রবেশ করে। এই আলো রোপাক্রান্ড বা কভিন্নত ক্লাকে আলোকিত করে। বিভীর বালোক তম্ভু নদের

ভিতর দিয়ে আলোর প্রতিফলিত অংশ একইতাবে ফিরে আসে। প্রতিফলিত আলো অভিনেত্র লেন্দের মাধ্যমে চিকিৎসকের চোখে প্রবেশ করে। ফলে চিকিৎসক পরীক্ষণীয় অক্টোর অভ্যান্তরে কী ঘটছে বা হচ্ছে তা দেখতে পারেন। এভোসকোপির মাধ্যমে চিকিৎসকগণ শরীরের অভ্যান্তরে যেকোনো ধরনের অস্বস্থিতবোধ, ক্ষত, প্রদাহ এবং অস্বাভাবিক কোষবৃদ্ধি পরীক্ষা করে থাকেন। নিমুবর্ণিত বিভিন্ন জ্ঞা পরীক্ষা করার জন্য এভোসকোপি ব্যবহৃত হয়। এপুলো হলো—

(ক) ফুসফুস, বুকের কেন্দ্রীয় বিভাজন অংশ; (খ) পাক্স্থলী, ক্দ্রান্ত্র, বৃহদান্ত্র বা কোলন; (গ) স্ত্রী প্রজনন অভা; (ঘ) উদর একং পেলভিস; (ভ) মৃত্রথলির অভ্যন্তরভাগ; (চ) নাসাগহরর একং নাকের চারপালের সাইনাসসমূহ; (ছ) কান।

রেডিওথেরাগি

Radiotherapy

রেডিওথেরাপি শব্দটি ইংরেজি 'Radiation Therapy' শব্দের সর্থকিক রূপ। এটি ব্যবহার করে বিভিন্ন রোগ যেমন— ক্যালার, থাইরয়েড গ্রন্থির অস্বাভাবিক প্রকৃতি, রক্তের কিছু ব্যাধির চিকিৎসা করা হয়। সাধারণত রেডিওথেরাপি উচ্চশক্তিসম্পন্ন এক্সরে ব্যবহার করে ক্যালার কোষ ধ্বংস করে। এটি টিউমার কোষের অভ্যন্তরুষ্থ ডিএনএ (DNA) -কে ধ্বংসের মাধ্যমে কোষের সংখ্যাবৃদ্ধি করার ক্ষমতা বিনক্ট করে কেলে। মূলতঃ এটি হলো কোনো রোগের চিকিৎসায় আয়নসৃষ্টিকারী (ভেজ্ঞাক্তির) বিকিরণের ব্যবহার।

রেডিওধেরাপি দুই ধরনের: (১) বাহ্যিক বীম বিকিরণ বা বাহ্যিক রেডিওধেরাপি (২) জভ্যুল্ভরীণ রেডিওধেরাপি।

বাহ্যিক রেডিওপেরাপির ক্ষেত্রে শরীরের বাহির থেকে উচ্চশক্তিসম্পন্ন এক্সরে, কোবান্ট বিকিরণ, ইলেকট্রন বা প্রোটন বীম ব্যবহার করা হয়। শরীরের যে স্থানে টিউমারটি অবস্থিত, সেই দিকে তাক করে বীমটি প্রয়োগ করা হয়। এর ফলে ক্যান্সার কোবের বৃন্দি এবং বিভান্ধন ক্ষমতা ধবনে হয়ে যায়। এ প্রক্রিয়ায় অন্ন সংখ্যক সুস্থ কোবও ক্ষতিগ্রস্ত হয়। তবুও আমাদের উদ্দেশ্য হলো কম সংখ্যক সুস্থ কোবকে ক্ষতিগ্রস্ত করে বেশি সংখ্যক ক্যান্সার কোবকে ধ্বংস করা। ক্ষতিগ্রস্ত অধিকাশে সুস্থ কোব নিজে থেকে এই ক্ষতি মেরামত করে কেলে।

চিত্র ১৪.৮: রেডিওপেরাপি যদত্ত

অভ্যন্তরীণ রেডিওথেরাপির ক্ষেত্রে রোগীকে শরীরের ভেডর থেকে রেডিওথেরাপি দেওয়া হয়। এ প্রক্রিয়ায় রোগী তেছাব্রিয় তরল পদার্থ পানীয় হিসেবে গ্রহণ করে অথবা ইনছেকশনের মাধ্যমে রোগীর দেহে তেছাব্রিয় তরল পদার্থ প্রবেশ করিয়ে দেওয়া হয়। রক্তের ক্যালারের ক্ষেত্রে এ তরল পদার্থে তেছাব্রিয় ক্ষমকরাস, হাড়ের ক্যালারের ক্ষেত্রে তেছাব্রিয় স্ট্রনশিয়াম এবং থাইরয়েড ক্যালারের ক্ষেত্রে তেছাব্রিয় আয়োডিন ব্যবহার করা হয়। এ প্রক্রিয়াকে ব্রাকিথেরাপি বলে।

बीग्रिक

RTT

क्षेत्र 59.b: विविधि गतिका

পরীক্ষার সময় রোজীকে একটি নিশ্ব বাইসাইকেল চালাকে বলা হয় কথবা একটি ট্রেডমিল বাশ্রে জনবাত বঁটার নির্দেশনা সেওয়া হয়। অসুশীনন চলা ক্ষমার প্রকিশনক রোজীর ইনিকি রেকর্ড করেন। পরীকার সমর চাকরে বুর্ণন মৃতি থকা তালা চাল উপবোজনের মাধ্যমে বাইন্যক পীড়ানো মারা ক্রমণঃ বৃশ্বি করা হয়। ইনিটি পরীকার মাধ্যমে ক্যুন্থিলালের সময় রোলীর মুখ্যালের যে ককল পরিকর্তন সংগঠিক হয় চিকিন্যক নেপুনের সমার করতে সক্ষয় হন।

अनकिल्हारि

Anglography

धनिक्वां स्थान व्यव व्यव व्यव व्यव विकास देवता प्रतिक प्र

২৩৮ পদার্থবিজ্ঞান

চিত্র ১৪.১০: এনজিওগ্রাম

সাধারণত যে সকল কারণে চিকিৎসকগণ এনঞ্চিওগ্রাম করার পরামর্শ দেন, এগুলো হলো–

- (ক) হুৎপিন্ডের বাহিরে ধমনীতে ব্লকেঞ্চ হলে;
- (খ) ধমনী প্রসারিত হলে;
- (গ) কিডনির ধমনীর অবস্থা বুঝার জন্য;
- (ঘ) শিরার কোনো সমস্যা হলে।

কখনো কখনো চিকিৎসকগণ এনজিওগ্রাম করার সময় একই সময়ে সার্জারী ছাড়াই রক্তনালির ব্লকের চিকিৎসা করে থাকেন। যে কৌশলে বা প্রক্রিয়ায় এনজিওগ্রাম করার সময় ধমনীর ব্লক মুক্ত করা হয় তাকে এনজিওগ্রাস্টি বলে।

আইসোটোপ এবং এর ব্যবহার

Isotopes and its uses

আইসোটোপগুলো হলো একটি নির্দিন্ট মৌলের রুপভেদ। বিভিন্ন ভরসংখ্যাবিশিন্ট একই মৌলের পরমাণুকে ঐ মৌলের আইসোটোপ বলে। অর্থাৎ কোনো মৌলের আইসোটোপসমূহে প্রোটনের সংখ্যা সমান থাকে, কিন্দু্তু নিউট্রনের সংখ্যা বিভিন্ন হয়। কোনো পরমাণুর নিউক্রিয়াসে অবস্থিত প্রোটনের সংখ্যা মৌলটিকে অনন্যরূপে সনাক্ত করে। কিন্দু্তু নীতিগতভাবে একটি মৌলের যেকোনো সংখ্যক নিউট্রন থাকতে পারে। মৌলের নিউক্রিয়াসে অবস্থিত প্রোটন এবং নিউট্রনের সংখ্যাই হলো এর ভরসংখ্যা। এ কারণেই কোনো মৌলের প্রত্যেকটি আইসোটোপের ভরসংখ্যা বিভিন্ন হয়। উদাহরণ হিসেবে কার্বনের কথা বলা যেতে পারে। কার্বনের তিনটি আইসোটোপ ${}^{12}_6 C$, ${}^{13}_6 C$ এবং ${}^{16}_6 C$, যাদের ভরসংখ্যা যথাক্রমে 12,13,14। কার্বনের পারমাণবিক সংখ্যা 6, অর্থাৎ প্রত্যেকটি কার্বন পরমাণুতে ছয়টি প্রোটন আছে। যার কলে কার্বনের আইসোটোপগুলোতে যথাক্রমে 6,7এবং ৪ টি নিউট্রন রয়েছে।

চিকিৎসাক্ষেত্রে 'পরমাণু চিকিৎসায়' তেজস্ক্রিয় আইসোটোপের ব্যাপক ব্যবহার রয়েছে। তেজস্ক্রিয় আইসোটোপের প্রধানত দুই ধরনের ব্যবহার আছে।

- (ক) রোগ নির্ণয়ের ক্ষেত্রে
- (খ) রোগ নিরাময়ের ক্ষেত্রে

রোগীর শরীরে কোনো স্থানে বা অঞ্চো ক্ষতিকর ক্যান্সার টিউমারের উপস্থিতি তেজস্ক্রিয় আইসোটোপের সাহায্যে সনাক্ত করা যায়। কোবাল্ট-60 (60 Co) আইসোটোপ থেকে নির্গত শক্তিশালী গামা রশ্মি ক্যান্সার চিকিৎসায় ব্যবহৃত হয়। কোবাল্ট-60 থেকে নির্গত গামা রশ্মির সাহায্যে অপারেশনের যল্ত্রপাতি রোগ জীবাণুমুক্ত করা হয়। থাইরয়েড গ্রন্থি বা গ্ল্যান্ডের অস্বাভাবিক বৃদ্ধিজনিত রোগের চিকিৎসায় আয়োডিন-131(131 I) ব্যবহৃত হয়। টেকনিশিয়াম-99m রোগ নির্গয়ের জন্য পরমাণু চিকিৎসায় বহুল ব্যবহৃত একটি তেজস্ক্রিয় আইসোটোপ। এটির সাহায্যে ব্রেন, লিভার, শ্লীহা এবং হাড়ের ইমেজিং বা স্ক্যানিং সম্পন্ন করা হয়। রক্তের শ্বেত কণিকার অত্যধিক বৃদ্ধির ফলে রক্তাল্পতা (Blood-Leukaemia) রোগের চিকিৎসায় তেজস্ক্রিয় ফসফরাস-32 (32 P) এর ফসফেট ব্যবহৃত হয়। পরমাণু চিকিৎসায় রোগ নির্গয়ের জন্য শিরার মধ্য দিয়ে ইনজেকশনের মাধ্যমে তেজস্ক্রিয় আইসোটোপ রোগীর দেহে প্রবেশ করানো হয়। রোগীর কোনো অজ্ঞোর পরীক্ষা করা হবে তার উপর নির্ভর করেই তেজস্ক্রিয় পদার্থ নির্বাচন করা হয়। এছাড়া কৃষিক্ষেত্রে, খাদ্যসংরক্ষণে, কীটপতজ্ঞা দমনে এবং শিল্পক্ষেত্রে তেজস্ক্রিয় আইসোটোপের ব্যাপক ব্যবহার রয়েছে।

অনুশীলনী

ক. বহুনির্বাচনি প্রশ্ন

সঠিক উত্তরের পাশে টিক $(\sqrt{})$ চিহ্ন দাও

- ১। বিজ্ঞানী জগীশচন্দ্র বসুর সাথে কোন বিষয়টি সংশ্লিফ ?
 - i) বসু মন্দির প্রতিষ্ঠা
 - ii) তেজস্ক্রিয় মৌলের ব্যবহার
 - iii) ক্রেস্কোগ্রাফ আবিষ্কার

নিচের কোনটি সঠিক?

ক) i গ) i ও iii ঘ) i,ii ও iii

২। X-ray ফিল্মে হাড়ের ছবি স্পষ্ট দেখা যাওয়ার কারণ—

ক) হাড় X-ray দারা অভেদ্য

খ) মাংসপেশি X-ray দ্বারা অভেদ্য

গ) তরজা দৈর্ঘ্য অনেক বেশি

ঘ) উঁচু ভেদনক্ষমতাসম্পন্ন

৩। সৃক্ষ রক্তনালিকার ব্লকেজ পরীক্ষা করার প্রযুক্তির নাম হলো—

ক) এনজিওগ্রাম

খ) এনজিওপ্লাস্টি

গ) ইটিটি

ঘ) ইসিজি

৪। হৃদ স্পন্দনের হার ও ছন্দময়তা পরিমাপ করা হয় কী উপায়ে?

ক) তড়িৎ সংকেত সনাক্ত করে

খ) X-ray এর মাধ্যমে

গ) নিউক্লীয় চৌম্বক অনুনাদের মাধ্যমে

ঘ) শব্দ তরজ্ঞা ব্যবহার করে

খ. সৃজনশীল প্রশ্ন

বিনুর চাচী মা হতে চলেছেন। চেক আপের জন্য তিনি নিয়মিত ডাক্তারের কাছে যান। কোন এক মাসে ডাক্তার ভূণের সঠিক অবস্থান ও আকার জানার জন্য তাকে একটি পরীক্ষা করার পরামর্শ দিলেন। আলট্রাসনোগ্রাফির মাধ্যমে তিনি পরীক্ষাটি করালেন এবং এর মাধ্যমে ডাক্তার ভূণ সম্পর্কে স্পষ্ট ধারণা লাভ করেন।

- ক) এম আর আই এর পূর্ণরূপ কী?
- খ) আইসোটোপগুলো একটি নির্দিষ্ট মৌলের রূপভেদ কেন?
- গ) ভূণ সম্পর্কে স্পষ্ট ধারণা লাভে আলট্রাসনোগ্রাফির ভূমিকা আলোচনা কর।
- ঘ) মিনার চাচীর পরীক্ষাটি অন্য কোনো চিকিৎসা প্রযুক্তির মাধ্যমে করা যাবে কি? –উত্তরের স্বপক্ষে যুক্তি দাও।

গ. সাধারণ প্রশ্ন

- ১। ভৌতজগৎ ও জীবজগৎ কী সম্পূর্ণ ভিন্ন নিয়মে চলে?
- ২। জীবপদার্থবিজ্ঞানের সূচনা কীভাবে হলো।
- ৩। পদার্থবিজ্ঞানের নিয়মগুলো কেন জীবজগতের ক্ষেত্রে প্রয়োগ করা যায়?
- ৪। পদার্থবিজ্ঞানে জগদীশচন্দ্র বসুর অবদান বর্ণনা কর।
- ে। জীবপদার্থবিজ্ঞানে তাঁর অবদান কী?
- ৬। মানবদেহ কখনো কখনো যন্তের মতো আচরণ করে ব্যাখ্যা কর।
- ৭। মানবদেহ একটি জৈব যল্ত্র– এর সপক্ষে যুক্তি দাও।
- ৮। পদার্থবিজ্ঞানের উদ্ভাবিত যন্ত্রপাতি কীভাবে চিকিৎসা ক্ষেত্রে কাচ্ছে লাগে।
- ৯। রোগ নির্ণয়ের জন্য ব্যবহুত কতগুলো যন্ত্রপাতির নাম লিখ।
- ১০। এক্সরে কী ? রোগ নির্ণয় ও চিকিৎসা ক্ষেত্রে এর ব্যবহার লিখ।
- ১১। আন্ট্রাসনোগ্রাফি কীভাবে চিকিৎসাক্ষেত্রে রোগ নির্ণয় করে।
- ১২। এমআরআই এর মাধ্যমে প্রাপ্ত প্রতিবিম্পের বর্ণনা দাও।
- ১৩। ইসিজির সাহায্যে কোন কোন রোগ নির্ণয় করা যায়?
- ১৪। এভোসকোপি যন্ত্র কী কাজে ব্যবহৃত হয়?
- ১৫। চিকিৎসাক্ষেত্রে রেডিওথেরাপি কেন ব্যবহার করা হয়?
- ১৬। ইটিটি এক ধরনের ইসিজি পরীক্ষা- বর্ণনা কর।
- ১৭। কোন কোন ক্ষেত্রে এনজিওগ্রাম করা হয়?
- ১৮। আইসোটোপ কী? চিকিৎসাক্ষেত্রে এটি কী কাজে লাগে?

দারিদ্যসুক্ত বাংলাদেশ গড়তে হলে শিক্ষা গ্রহণ করতে হবে

– মাননীয় প্রধানমন্ত্রী শেখ হাসিনা

সমুদয় কাজই সাহস ও সকলের ওপর নির্ভরশীল

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারে ১০৯২১ নম্বর-এ (টোল ফ্রি, ২৪ ঘণ্টা সার্ভিস) ফোন করুন

২০১০ শিক্ষাবর্ষ থেকে সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য