অধ্যায়ঃ ৪

"কাজ ,ক্ষমতা ও শক্তি"

চলকের পরিচিতিঃ

নাম	প্রতীক	একক	মাত্রা
কাজ	W	J (<i>जून</i>)	ML^2T^{-2}
শক্তি	Е	J	ML^2T^{-2}
বিভবশক্তি	E _p বা V	J	ML^2T^{-2}
গতিশক্তি	$E_{\mathbf{k}}$ वा T	J	ML^2T^{-2}
আলোর বেগ	$C=3 \times 10^8$	ms ⁻¹	
ক্ষমতা	P	W (ওয়াট)	ML^2T^{-3}
কর্মদক্ষতা	η		

$$F$$
= বল

$$2. \, \sqrt[p]{g}, W = Fs \cos \theta$$

s = বলের দিকে সরণ

 $\theta =$ বল ও সরণের মধ্যবর্তী কোণ

3. যান্ত্ৰিক শক্তি= বিভবশক্তি + গতিশক্তি

4. বিভবশক্তি, $V \ / \ E_p = mgh$

m=<mark>ভর</mark>

g= অভিকর্ষজ ত্বরণ

h= ভুমি থেকে যত উচুতে

বিভবশক্তি নির্ণয় করতে হবে

5.গতিশক্তি, $\mathrm{T}/E_k=rac{1}{2}mv^2$

v= যে মুহুর্তের গতিশক্তি বের

বের করতে বলা হয়েছে ঐ

মুহুর্তের বেগ

(v বের করার সূত্রঃ $v^2 = u^2 + 2ah$)

(h =কোথা থেকে কোথায় আসছে)

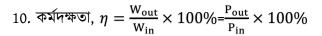
6.মোটশক্তি = বিভবশক্তি + গতিশক্তি

$$E_{total} = E_p + E_k$$

7. স্প্রিং এর জন্যঃ

1. F = kx

2. সঞ্জিত শক্তি, $V = \frac{1}{2}kx^2$


[F= প্রযুক্ত বল, $x=\,$ সরণ, $k=\,$ স্প্রিং ধ্রুবক $\,]$

৪.ভারশান্তির রুপান্তরঃ $E=mc^2$

9. Thus, $P = \frac{W}{t}$

w= কাজ

t = w পরিমাণ কাজ করতে যত সময় লেগেছে

W_{out} = যে শক্তি পাওয়া হয়েছে

 $W_{
m in}$ = যে শক্তি দেওয়া হয়েছে P_{in} =ইনপুট পাওয়ার $P_{
m out}$ =আউটপুট ক্ষমতা